Chapter 6: Techniques of Integration
Section 6.2: Trigonometric Integrals
Example 6.2.9
Derive the reduction formula ∫sec2 k+1x dx=12 ksec2 k−1xtanx+2 k−1∫sec2 k−1x dx.
Solution
Mathematical Solution
Apply steps similar to those used in Example 6.2.5. For the parts-integration step, choose
u=sec2 k−1x
dv=sec2xdx
du=2 k−1sec2 k−2x⋅secxtanxdx
v=tanx
Then, parts integration yields
∫sec2 k+1x dx
=sec2 k−1xtanx−2 k−1∫tanx⋅sec2 k−2x⋅secx⋅tanx dx
=sec2 k−1xtanx−2 k−1∫tan2xsec2 k−1x dx
Application of the identity tan2x=sec2x−1 then yields
=sec2 k−1xtanx−2 k−1∫sec2x−1⋅sec2 k−1x dx
=sec2 k−1xtanx−2 k−1∫sec2 k+1x dx−∫sec2 k−1x dx
1+2 k−1∫sec2 k+1x dx
=sec2 k−1xtanx+2 k−1∫sec2 k−1x dx
2 k∫sec2 k+1x dx
=12 ksec2 k−1xtanx+2 k−1∫sec2 k−1x dx
Solving for the unknown integral finally results in
Maple Solution
Initialize
Install the IntegrationTools package.
withIntegrationTools:
Assign the integral to the name Q.
Q≔∫sec2 k+1x ⅆx:
Integrate by parts, setting u=sec2 k−1x and dv=sec2x dx
q1≔PartsQ,sec2 k−1x
sin⁡x⁢sec⁡x2⁢k−1cos⁡x−∫sin⁡x⁢sec⁡x2⁢k−1⁢2⁢k−1⁢tan⁡xcos⁡xⅆx
Restore tanx, replace 2 k−1 with K, and apply the identity tan2x=sec2x−1
q2≔evalq1,2 k−1=K, sinx=tanx⋅cosx:q3≔evalq2,tan2x=sec2x−1
tan⁡x⁢sec⁡xK−∫sec⁡x2−1⁢sec⁡xK⁢Kⅆx
Expand the product in the integrand and combine the resulting secant terms Split the integral and restore 2 k−1
q4≔combineexpandq3 assuming K∷posint:q5≔evalexpandq4,K+2,K=2 k−1
2⁢k−1⁢∫sec⁡x2⁢k−1ⅆx−2⁢k−1⁢∫sec⁡x2⁢k+1ⅆx+tan⁡x⁢sec⁡x2⁢k−1
Solve for the unknown integral
isolateQ−q5,Q
∫sec⁡x2⁢k+1ⅆx=12⁢2⁢k−1⁢∫sec⁡x2⁢k−1ⅆx+tan⁡x⁢sec⁡x2⁢k−1k
<< Previous Example Section 6.2 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document