Chapter 6: Techniques of Integration
Section 6.6: Rationalizing Substitutions
Example 6.6.2
Evaluate the indefinite integral ∫1x1/3+x1/4 ⅆx.
Solution
Mathematical Solution
As per Table 6.6.1, make the substitution u=x1/12, or u12=x, so that dx=12 u11, and the given integral becomes
∫12 u11u4+u3 ⅆu
=12∫u8u+1 ⅆu
=12∫u7−u6+u5−u4+u3−u2+u−1+1u+1 ⅆu
=12(u88−u77+u66−u55+u44−u33+u22−u+ln(u+1)
=12(x3/48−x7/127+x6−x5/125+x1/34−x1/43+x1/62−x1/12+ln(x1/12+1)
The expansion of the integrand in the second line is the result of a long division.
Maple Solution
Maple's built-in integrator returns an unexpectedly long and cumbersome antiderivative. Obviously, the algorithm used to find this is not the one used by the tutor, whose first step is shown in Table 6.6.2(a).
∫1x13+x14ⅆx=∫12⁢u7−12⁢u6+12⁢u5−12⁢u4+12⁢u3−12⁢u2+12⁢u−12+12u+1ⅆuchange,x=u12,u
Table 6.6.2(a) First step taken in the Integration Methods tutor
The remaining steps of the integration are straightforward. However, Table 6.6.2(b) contains this solution implemented through the Change and GetIntegrand commands from the IntegrationTools package.
Install the IntegrationTools package.
withIntegrationTools:
Control-drag the given integral.
Context Panel: 2-D Math≻Convert To≻Inert Form
Q≔∫1x1/3+x1/4 ⅆx:
Apply the simplify command after changing variables with the Change command.
Effect a long division by imposing a partial-fraction decomposition on the integrand, which is extracted with the GetIntegrand command. Re-build the inert integral with the Int command.
Evaluate the integral with the value command.
Revert the original substitution.
q1≔simplifyChangeQ,x=u12,u assuming u>0
12⁢∫u8u+1ⅆu
q2≔12⋅IntconvertGetIntegrandq1,parfrac,u,u
12⁢∫u7−u6+u5−u4+u3−u2+u−1+1u+1ⅆu
q3≔valueq2
32⁢u8−127⁢u7+2⁢u6−125⁢u5+3⁢u4−4⁢u3+6⁢u2−12⁢u+12⁢ln⁡u+1
evalq3,u=x1/12
32⁢x2/3−127⁢x7/12+2⁢x−125⁢x5/12+3⁢x1/3−4⁢x1/4+6⁢x1/6−12⁢x1/12+12⁢ln⁡x1/12+1
Table 6.6.2(b) Stepwise solution based on commands from the IntegrationTools package
Note that Maple's integrator applied to u8/1+u finds the same antiderivative whether or not the partial-fraction decomposition is imposed.
Note that an annotated stepwise solution is available via the Context Panel with the "All Solution Steps" option.
The rules of integration can also be applied via the Context Panel, as per the figure to the right.
<< Previous Example Section 6.6 Next Example >>
© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document