BottomSequence - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

BottomSequence

  

bottom sequence of a hypergeometric term

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

BottomSequence(T, x, opt)

Parameters

T

-

hypergeometric term in x

x

-

name

opt

-

(optional) equation of the form primitive=true or primitive=false

Description

• 

Consider T as an analytic function in x satisfying a linear difference equation pxTx+1+qxTx=0, where px and qx are polynomials in x. For h and any integer k, let ck,h be the h-th coefficient of the Laurent series expansion for T at x=k. An integer m is called depth of T if ck,h=0 for all h<m and all integers k, and ck,m0 for some k.

• 

The bottom sequence of T is the doubly infinite sequence bx defined as bx=cx,m for all integers x, where m is the depth of T. The command BottomSequence(T, x) returns the bottom sequence of T in form of an expression representing a function of (integer values of) x. Typically, this is a piecewise expression.

• 

The bottom sequence bx is defined at all integers x and satisfies the same difference equation pxbx+1+qxbx=0 as T.

• 

If T is Gosper-summable and S=vT is its indefinite sum found by Gosper's algorithm, then the depth of S is also m. If the optional argument primitive=true (or just primitive) is specified, the command returns a pair v,u, where v is the bottom sequence of T and u is the bottom sequence of S or FAIL if T is not Gosper-summable.

• 

Note that this command rewrites expressions of the form nk in terms of GAMMA functions Γn+1Γk+1Γnk+1.

• 

If assumptions of the form x0<x and/or x<x1 are made, the depth and the bottom of T are computed with respect to the given interval instead of ...

Examples

withSumToolsHypergeometric&colon;

Tnn!

Tnn!

(1)

b,sBottomSequenceT&comma;n&comma;primitive

b,s−1nnΓnn−100n,−1nΓnn−100n

(2)

Note that b is not equivalent to T:

evalb&comma;n=1

0

(3)

evalT&comma;n=1

1

(4)

evalb&comma;n=1

−1

(5)

evalT&comma;n=1

Error, numeric exception: division by zero

However, b satisfies the same difference equation as T:

expandnevalT&comma;n=n+1n+12T

0

(6)

znevalb&comma;n=n+1n+12b

zn−1n+1n+1Γn1n−200n+1n+12−1nnΓnn−100n

(7)

simplifyzassumingn2

0

(8)

simplifyzassuming0n

0

(9)

evalz&comma;n=1

0

(10)

s is an indefinite sum of b:

zevals&comma;n=n+1sb

z−1n+1Γn1n−200n+1−1nΓnn−100n−1nnΓnn−100n

(11)

simplifyzassumingn2

0

(12)

simplifyzassuming0n

0

(13)

evalz&comma;n=1

0

(14)

Now assume that 0n:

b,sBottomSequenceT&comma;n&comma;primitiveassuming0n

b,snΓn+1,Γn+1

(15)

With that assumption, b and T are equivalent, and s is an indefinite sum of both:

simplifybT

0

(16)

simplifyevals&comma;n=n+1sb

0

(17)

Example of a hypergeometric term with parameters:

TΓnnk

TΓnnk

(18)

BottomSequenceT&comma;n

0n−1−1nn+kΓn+10n

(19)

Note that k is considered non-integer.

BottomSequenceT&comma;nassumingk::nonnegint

0n−1−1nn+kΓn+10n

(20)

BottomSequenceevalT&comma;k=2&comma;n

0n112n=203n

(21)

Tbinomial2n3&comma;n4n

T2n3n4n

(22)

b,sBottomSequenceT&comma;n&comma;primitive

b,s0n−112n=018n=14nn2Γ2n12Γn2n2n,0n012n=14nn+1Γ2n1Γn22n

(23)

References

  

S.A. Abramov, M. Petkovsek. "Analytic solutions of linear difference equations, formal series, and bottom summation." Proc. of CASC'07, (2007): 1-10.

  

S.A. Abramov, M. Petkovsek. "Gosper's Algorithm, Accurate Summation, and the Discrete Newton-Leibniz Formula." Proceedings of ISSAC'05, (2005): 5-12.

Compatibility

• 

The SumTools[Hypergeometric][BottomSequence] command was introduced in Maple 15.

• 

For more information on Maple 15 changes, see Updates in Maple 15.

See Also

assuming

binomial

SumTools[DefiniteSum][SummableSpace]

SumTools[Hypergeometric]

SumTools[Hypergeometric][Gosper]