Pipe Bend
Lossy model of a circular pipe
Description
Equations
Variables
Connections
Parameters
The Pipe Bend component models a circular pipe with losses caused by the bending of flow. The pressure drop is computed with the Darcy equation, with the friction factor determined using the Haaland approximation for turbulent flow along with correction factors due to the bend which contributes to the total resistance to the flow inside the pipe.
If Model Type=Crane:
K=MapleSim.Interpolate1D⁡Crane_data,R0Dh
zetaloc=λ⁢K
zetafri=2⁢λ⁢π4⁢R0Dh
zetatotal=zetaloc+zetafri
otherwise (Model Type=Idelchik - Circular):
A1={0.9⁢sin⁡θθ≤700.7+0.3590⁢θ100≤θ0otherwise
A2=MapleSim.Interpolate1D⁡data,R0Dh
Bloc=A1={0.21R0Dh0.51≤R0Dh0.21R0Dh2.5otherwise
cloc=1
kδ={{1Re≤40000min⁡1.5,max⁡1,1+500⁢εDh_actotherwiseR0D0Bend{1Re≤40000min⁡2,max⁡1,λtur_roughnessλtur_smooth40000<Re<200000min⁡2,max⁡1,1+1000⁢εDh_actotherwise
Friction coefficient of smooth pipe for kRe:
λtur_smooth=14⁢1log10⁡5.74max⁡Re,10.92
λtur_roughness=14⁢1log10⁡ε3.7⁢Dh_act+5.74max⁡Re,10.92
Correction factor kRe (Reynolds number dependency)
kRey=MapleSim.Interpolate1D⁡data,Re
Friction resistance is defined with
zetafri=θ⁢λ⁢R0Dh
Total resistance is defined with
zetaact=zetaloc+zetafri
Re=q⁢D⁢Dha⁢nuDh=4⁢AUA=π⁢D24
fL=64⁢fTRefT=fColebrook⁡ReT,εDh
mode={posturbulentReT<RenegturbulentReT<−ReposmixedReL<RenetmixedReL<−Relaminarotherwise
λ=1Re⁢{fColebrook⁡|Re|,εDh⁢Remode=posturbulent∨mode=negturbulentfL+fT−fLReT−ReL⁢Re−ReL⁢Remode=posmixed∨mode=negmixed64otherwise
fColebrook=Re,εD→1.8log10⁡6.9Re+εD3.71.11−2
p=pA−pB=12⁢zetatotal⁢ρ⁢v2
q=qA=−qB=Re⁢A⁢nuDh
v=qA
References
[1] : Crane : Flow of Fluids Through Valves, Fittings, and Pipes, Crane LTD, Technical Paper No. 410M
[2] : Idelchik,I.E.: Handbook of hydraulic resistance, Jaico Publishing House, Mumbai, 3rd edition, 2006.
[3] : Swamee P.K., Jain A.K. (1976): Explicit equations for pipe-flow problems, Proc. ASCE, J.Hydraul. Div., 102 (HY5), pp. 657-664.
λ=12⁢Maplesoft.Hydraulics.Restrictions.ColebrookFriction⁡Re,ReT,εDh⁢Re⁢1+mode+12⁢Ks⁢1−modemax⁡0.1,Re
mode=Maplesoft.Hydraulics.Functions.sat⁡Re−12⁢ReL−12⁢ReT,12⁢Re+12⁢ReT
q=qA=ℜ⁢A⁢νDh
Name
Value
Units
Modelica ID
p
Pa
Pressure drop from A to B
q
m3s
Flow rate from port A to port B
portA
Upstream hydraulic
portB
Downstream hydraulic port
Default
Model Type
Crane
Type of Calculation model
modelBend
D
0.01
m
Inner diameter
ε
2.5·10−5
Height of inner surface roughness
epsilon
R0
0.1
Radius of neutral axis
θ
π6
rad
Angle of bend
theta
ReL
2·103
Reynolds number at transition to laminar flow
ReT
4·103
Reynolds number at transition to turbulent flow
Apply Coefficients
false
Override
A1
⋅45
Coefficient that allows for the effect of bend angle on the local resistance
A2
2.·103
Correction factor A2, Idelchik
B
⋅21
Correction factor B, Idelchik
kRe
2
Correction factor k_re, Idelchik
K_Rey
zetacorr
1
Correction
See Also
Hydraulics Library
Restrictions
Download Help Document