Pipe Bend - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Pipe Bend

Lossy model of a circular pipe

 

Description

Equations

Variables

Connections

Parameters

Description

The Pipe Bend component models a circular pipe with losses caused by the bending of flow. The pressure drop is computed with the Darcy equation, with the friction factor determined using the Haaland approximation for turbulent flow along with correction factors due to the bend which contributes to the total resistance to the flow inside the pipe.

Equations

If Model Type=Crane:

K=MapleSim.Interpolate1DCrane_data,R0Dh

zetaloc=λK

zetafri=2λπ4R0Dh

zetatotal=zetaloc+zetafri

otherwise (Model Type=Idelchik - Circular):

A1={0.9sinθθ700.7+0.3590θ100θ0otherwise

A2=MapleSim.Interpolate1Ddata,R0Dh

Bloc=A1={0.21R0Dh0.51R0Dh0.21R0Dh2.5otherwise

cloc=1

kδ&equals;{{1Re40000min1.5&comma;max1&comma;1&plus;500εDh_actotherwiseR0D0Bend{1Re40000min2&comma;max1&comma;λtur_roughnessλtur_smooth40000<Re<200000min2&comma;max1&comma;1&plus;1000εDh_actotherwise

Friction coefficient of smooth pipe for kRe:

λtur_smooth&equals;141log105.74maxRe&comma;10.92

λtur_roughness&equals;141log10ε3.7Dh_act&plus;5.74maxRe&comma;10.92

Correction factor kRe (Reynolds number dependency)

kRey&equals;MapleSim.Interpolate1Ddata&comma;Re

Friction resistance is defined with

zetafri&equals;θλR0Dh

Total resistance is defined with

zetaact&equals;zetaloc&plus;zetafri

Re&equals;qDDhanuDh&equals;4AUA&equals;πD24

fL&equals;64fTRefT&equals;fColebrookReT&comma;εDh

mode&equals;{posturbulentReT<RenegturbulentReT<ReposmixedReL<RenetmixedReL<Relaminarotherwise

λ&equals;1Re{fColebrook&verbar;Re&verbar;&comma;εDhRemode&equals;posturbulentmode&equals;negturbulentfL&plus;fTfLReTReLReReLRemode&equals;posmixedmode&equals;negmixed64otherwise

fColebrook&equals;Re&comma;εD1.8log106.9Re&plus;εD3.71.11−2

p&equals;pApB&equals;12zetatotalρv2

q&equals;qA&equals;qB&equals;ReAnuDh

v&equals;qA

References

[1] : Crane : Flow of Fluids Through Valves, Fittings, and Pipes, Crane LTD, Technical Paper No. 410M

[2] : Idelchik,I.E.: Handbook of hydraulic resistance, Jaico Publishing House, Mumbai, 3rd edition, 2006.

[3] : Swamee P.K., Jain A.K. (1976): Explicit equations for pipe-flow problems, Proc. ASCE, J.Hydraul. Div., 102 (HY5), pp. 657-664.

λ&equals;12Maplesoft.Hydraulics.Restrictions.ColebrookFrictionRe&comma;ReT&comma;εDhRe1&plus;mode&plus;12Ks1modemax0.1&comma;Re

mode&equals;Maplesoft.Hydraulics.Functions.satRe12ReL12ReT&comma;12Re+12ReT

p&equals;pApB&equals;12zetatotalρv2

q&equals;qA&equals;AνDh

v&equals;qA

Variables

Name

Value

Units

Description

Modelica ID

p

 

Pa

Pressure drop from A to B

p

q

 

m3s

Flow rate from port A to port B

q

Connections

Name

Description

Modelica ID

portA

Upstream hydraulic

portA

portB

Downstream hydraulic port

portB

Parameters

Name

Default

Units

Description

Modelica ID

Model Type

Crane

 

Type of Calculation model

modelBend

D

0.01

m

Inner diameter

D

ε

2.5·10−5

m

Height of inner surface roughness

epsilon

R0

0.1

m

Radius of neutral axis

R0

θ

π6

rad

Angle of bend

theta

ReL

2·103

 

Reynolds number at transition to laminar flow

ReL

ReT

4·103

 

Reynolds number at transition to turbulent flow

ReT

Apply Coefficients

false

 

 

Override

A1

45

 

Coefficient that allows for the effect of bend angle on the local resistance

A1

A2

2.·103

 

Correction factor A2, Idelchik

A2

B

21

 

Correction factor B, Idelchik

B

kRe

2

 

Correction factor k_re, Idelchik

K_Rey

zetacorr

1

 

 

Correction

See Also

Hydraulics Library

Restrictions