linalg(deprecated)/ffgausselim - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : linalg(deprecated)/ffgausselim

linalg(deprecated)

  

ffgausselim

  

fraction-free Gaussian elimination on a matrix

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ffgausselim(A)

ffgausselim(A, 'r')

ffgausselim(A, 'r', 'd')

ffgausselim(A, rmar)

Parameters

A

-

rectangular matrix

'r'

-

(optional) for returning the rank of A

'd'

-

(optional) for returning the determinant of A

rmar

-

(optional) non-negative integer

Description

• 

Important: The linalg package has been deprecated. Use the superseding command LinearAlgebra[GaussianElimination], instead.

  

- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.

• 

Fraction-free Gaussian elimination with row pivoting is performed on A, an n by m matrix of multivariate polynomials over the rationals. The result is an upper triangular matrix of multivariate polynomials.

• 

If an optional second parameter is specified, and it is a name, it is assigned the rank of A. The rank of A is the number of non-zero rows in the resulting matrix.

• 

If an optional third parameter is also specified, and the rank of A = n, then it is assigned the determinant of submatrixA,1..n,1..n.

• 

If an optional second parameter is specified, and it is an integer, the elimination is terminated at this column position.

• 

The command with(linalg,ffgausselim) allows the use of the abbreviated form of this command.

Examples

Important: The linalg package has been deprecated. Use the superseding command LinearAlgebra[GaussianElimination], instead.

withlinalg:

Amatrix3,3,x,1,0,0,0,1,1,y,1

Ax100011y1

(1)

ffgausselimA,r,d

x100yx1x00yx1

(2)

rankA

3

(3)

detA

yx+1

(4)

See Also

linalg(deprecated)[gausselim]

linalg(deprecated)[gaussjord]

linalg(deprecated)[rowspan]

LinearAlgebra