Gegenbauer ODEs
Description
Examples
The general form of the Gegenbauer ODE is given by the following:
Gegenbauer_ode := (x^2-1)*diff(y(x),x,x)-(2*m+3)*x*diff(y(x),x)+lambda*y(x)=0;
Gegenbauer_ode≔x2−1⁢ⅆ2ⅆx2y⁡x−2⁢m+3⁢x⁢ⅆⅆxy⁡x+λ⁢y⁡x=0
where m is an integer. See Infeld and Hull, "The Factorization Method". The solution of this type of ODE can be expressed in terms of the LegendreQ and LegendreP functions:
with⁡DEtools,odeadvisor
odeadvisor
odeadvisor⁡Gegenbauer_ode
_Gegenbauer
dsolve⁡Gegenbauer_ode
y⁡x=c__1⁢x2−154+m2⁢LegendreP⁡m2−λ+4⁢m+4−12,52+m,x+c__2⁢x2−154+m2⁢LegendreQ⁡m2−λ+4⁢m+4−12,52+m,x
See Also
DEtools
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
sym_Fx
linear_sym
Bessel
Painleve
Halm
Gegenbauer
Duffing
ellipsoidal
elliptic
erf
Emden
Jacobi
Hermite
Lagerstrom
Laguerre
Liouville
Lienard
Van_der_Pol
Titchmarsh
odeadvisor,types
Download Help Document