type/mathfunc
check for mathematical functions
Calling Sequence
Parameters
Description
Examples
type(f, mathfunc)
f
-
name
This procedure checks to see if the given name, f, is the name of a mathematical function known to Maple.
The definition of a mathematical function, in this context, is heuristic but reasonably effective: A name, g, is considered to represent a mathematical function if either g has been defined as an operator or there exists a routine called evalf/g. (See evalf for more details about numerical evaluation of functions and expressions.)
The following top-level mathematical functions are known to type/mathfunc:
abs
AiryAi
AiryAiZeros
AiryBi
AiryBiZeros
AngerJ
AppellF1
AppellF2
AppellF3
AppellF4
arccos
arccosh
arccot
arccoth
arccsc
arccsch
arcsec
arcsech
arcsin
arcsinh
arctan
arctanh
argument
BellB
BesselI
BesselJ
BesselJZeros
BesselK
BesselY
BesselYZeros
Beta
binomial
ceil
ChebyshevT
ChebyshevU
Chi
Ci
CompleteBellB
conjugate
cos
cosh
cot
coth
CoulombF
csc
csch
csgn
CylinderD
CylinderU
CylinderV
D
dawson
dilog
Dirac
doublefactorial
Ei
EllipticCE
EllipticCK
EllipticCPi
EllipticE
EllipticF
EllipticK
EllipticModulus
EllipticNome
EllipticPi
erf
erfc
erfi
Eval
exp
Factor
factorial
Factors
floor
frac
FresnelC
Fresnelf
Fresnelg
FresnelS
GAMMA
GaussAGM
GegenbauerC
GeneralizedPolylog
HankelH1
HankelH2
harmonic
Heaviside
HermiteH
HeunB
HeunBPrime
HeunC
HeunCPrime
HeunD
HeunDPrime
HeunG
HeunGPrime
HeunT
HeunTPrime
hypergeom
Hypergeom
ilog
ilog10
Im
IncompleteBellB
int
Int
InverseJacobiAM
InverseJacobiCD
InverseJacobiCN
InverseJacobiCS
InverseJacobiDC
InverseJacobiDN
InverseJacobiDS
InverseJacobiNC
InverseJacobiND
InverseJacobiNS
InverseJacobiSC
InverseJacobiSD
InverseJacobiSN
JacobiAM
JacobiCD
JacobiCN
JacobiCS
JacobiDC
JacobiDN
JacobiDS
JacobiNC
JacobiND
JacobiNS
JacobiP
JacobiSC
JacobiSD
JacobiSN
JacobiTheta1
JacobiTheta2
JacobiTheta3
JacobiTheta4
JacobiZeta
KelvinBei
KelvinBer
KelvinHei
KelvinHer
KelvinKei
KelvinKer
KummerM
KummerU
LaguerreL
LambertW
LegendreP
LegendreQ
LerchPhi
Li
limit
Limit
ln
lnGAMMA
log
log10
log2
LommelS1
LommelS2
MathieuA
MathieuB
MathieuC
MathieuCE
MathieuCEPrime
MathieuCPrime
MathieuExponent
MathieuFloquet
MathieuFloquetPrime
MathieuS
MathieuSE
MathieuSEPrime
MathieuSPrime
max
MeijerG
min
MultiPolylog
MultiZeta
piecewise
pochhammer
polar
polylog
product
Product
Psi
Re
RealRange
RiemannTheta
RootOf
round
sec
sech
Shi
Si
signum
sin
sinh
SphericalY
sqrt
Ssi
StruveH
StruveL
sum
Sum
surd
tan
tanh
trunc
WeberE
WeierstrassP
WeierstrassPPrime
WeierstrassSigma
WeierstrassZeta
WhittakerM
WhittakerW
Wrightomega
Zeta
type⁡h,mathfunc
false
`evalf/h` := proc(x) evalf(x^2); end:
true
type⁡x↦x2,mathfunc
See Also
evalf
inifcns
operators
type
Download Help Document