Beta - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Beta

Beta function

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Beta(x, y)

Βx,y

Parameters

x

-

algebraic expression

y

-

algebraic expression

Description

• 

The Beta(x,y) function (Beta function) is defined in general as follows:

Βx,y=ΓxΓyΓx+y

with the following exceptions due to GAMMA being singluar at non-positive integers:

• 

When x+y is a non-positive integer but x and y are not, then Beta(x,y) is 0.

• 

If x is a non-positive integer then Beta(x,y) is defined by the limit:

Βx,y=limt0Γx+tΓyΓx+t+y

• 

If y is a non-positive integer but x is not, then Beta(x,y) is defined by the symmetry relation Beta(x,y) = Beta(y,x), and the above limit is used.

• 

In the cases above where the limit is computed and is finite - for example, when x and x+y are non-positive integers but y>0 - Maple signals the invalid_operation numeric event, allowing the user to control this singular behavior by catching the event. For more information, see numeric_events.

• 

Note that Beta(x,y) can be represented by the following integral:

Βp,q=01xp11xq1ⅆx

when Re(p) > 0 and Re(q) > 0.

• 

Also Beta(x,y) is related to the binomial coefficient via Beta(x,y) * binomial(x+y, x) = (x+y)/x/y.

• 

You can enter the command Beta using either the 1-D or 2-D calling sequence. For example, Beta(1, 2) is equivalent to Β1,2.

Examples

Β1,2

12

(1)

Β1.2+3.4I,2.1+5.7I

0.66009444701.126821143I

(2)

Β32,52

0

(3)

NumericStatusinvalid_operation=false:

Β3,2

16

(4)

NumericStatusinvalid_operation

true

(5)

See Also

binomial

events

GAMMA

initialfunctions

NumericStatus