Overview - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ComplexBox

Box objects in the complex plane

 

Calling Sequence

Parameters

Description

Creating Complex Boxes

Special Values and Constants

Elementary Functions

Circular and Hyperbolic Functions

Special Functions

Compatibility

Calling Sequence

ComplexBox( re, im )

ComplexBox( re )

ComplexBox( z )

ComplexBox( b )

Parameters

re

-

RealBox object; the real part of the complex box

im

-

RealBox object; the imaginary part of the complex box

z

-

extended complex numeric value

b

-

ComplexBox object

precopt

-

(optional) equation of the form precision = n, where n is a positive integer

Description

• 

A ComplexBox object represents a pair of RealBox objects comprising its real and complex parts.

Creating Complex Boxes

• 

In this section we describe the construction of complex box objects.

• 

The simplest way to create a ComplexBox object is to pass a complex number to the ComplexBox object constructor.

b := ComplexBox( 2.3 + 4.1*I );

bComplexBox: [2.3 +/- 2.32831e-10]+[4.1 +/- 4.65661e-10]I

(1)

type( b, ':-ComplexBox' );

true

(2)
• 

The real and imaginary parts of the resulting ComplexBox object are of type RealBox. You can access them by calling the Re and Im methods.

type( Re( b ), ':-RealBox' );

true

(3)

type( Im( b ), ':-RealBox' );

true

(4)
• 

The second way to create a ComplexBox object is to pass the RealBox objects for its real and imaginary parts.

b := ComplexBox( RealBox( 2.3 ), RealBox( 7.77 ) );

bComplexBox: [2.3 +/- 2.32831e-10]+[7.77 +/- 4.65661e-10]I

(5)

type( b, ':-ComplexBox' );

true

(6)
• 

The imaginary part is optional:

b := ComplexBox( RealBox( 2.3 ) );

bComplexBox: [2.3 +/- 2.32831e-10]+[0 +/- 0]I

(7)

type( b, ':-ComplexBox' );

true

(8)
• 

The resulting Complexbox object has a zero imaginary part.

Im( b );

RealBox: 0±0

(9)
• 

As for objects of type RealBox, a ComplexBox object is also of type BoxObject.

type( b, ':-BoxObject' );

true

(10)
• 

Use the 'precision' = n option to control the precision used in these methods. For more details on precision, see BoxPrecision.

Special Values and Constants

• 

The ComplexBox constructor recognizes several special values for which particular methods are invoked. These include the values 0, 1, I, +I, and undefined+undefinedI.

• 

In additions, the symbolic constant π can be used and computed to high precision by using the precision= option.

ComplexBox( I );

ComplexBox: [0 +/- 0]+[1 +/- 0]I

(11)

ComplexBox( Pi );

ComplexBox: [3.14159 +/- 1.16415e-10]+[0 +/- 0]I

(12)

ComplexBox( Pi, 'precision' = 1000 );

ComplexBox: [3.14159 +/- 1.86653e-301]+[0 +/- 0]I

(13)

Elementary Functions

• 

The elementary functions that are available as methods for ComplexBox objects are listed as follows.

Elementary

abs

compute the absolute value of a ComplexBox

argument

compute the argument of a ComplexBox

csgn

compute the sign of a ComplexBox

exp

compute the exponential of a ComplexBox

expm1

compute the exponential minus one of a ComplexBox

expPiI

compute the exponential of PiI times a ComplexBox

Im

compute the imaginary part of a ComplexBox

log

compute the logarithm of a ComplexBox

log1p

compute the logarithm of a ComplexBox minus one

Re

compute the real part of a ComplexBox

rsqrt

compute the reciprocal square root of a ComplexBox

signum

compute the signum of a ComplexBox

sqrt

compute the square root of a ComplexBox

Circular and Hyperbolic Functions

• 

Most of the standard circular and hyperbolic functions have been provided as ComplexBox object methods. Those defined are listed below.

Circular

arccos

compute the inverse cosine of a ComplexBox

arccot

compute the inverse cotangent of a ComplexBox

arccsc

compute the inverse cosecant of a ComplexBox

arcsec

compute the inverse secant of a ComplexBox

arcsin

compute the inverse sine of a ComplexBox

arctan

compute the inverse tangent of a ComplexBox

cos

compute the cosine of a ComplexBox

cospi

compute the cosine of a ComplexBox times Pi

cot

compute the cotangent of a ComplexBox

cotpi

compute the cotangent of a ComplexBox times Pi

csc

compute the cosecant of a ComplexBox

sec

compute the secant of a ComplexBox

sin

compute the sine of a ComplexBox

sinc

compute the sinc of a ComplexBox

sincpi

compute the sinc of a ComplexBox times Pi

sinpi

compute the sine of a ComplexBox times Pi

tan

compute the tangent of a ComplexBox

tanpi

compute the tangent of a ComplexBox times Pi

Hyperbolic

arccosh

compute the inverse hyperbolic cosine of a ComplexBox

arcsinh

compute the inverse hyperbolic sine of a ComplexBox

arctanh

compute the inverse hyperbolic tangent of a ComplexBox

cosh

compute the hyperbolic cosine of a ComplexBox

coth

compute the hyperbolic cotangent of a ComplexBox

csch

compute the hyperbolic cosecant of a ComplexBox

sech

compute the hyperbolic secant of a ComplexBox

sinh

compute the hyperbolic sine of a ComplexBox

sinhcosh

compute the hyperbolic sine and hyperbolic cosine of a ComplexBox

tanh

compute the hyperbolic tangent of a ComplexBox

Special Functions

• 

Many special and hypergeometric functions are available as ComplexBox object methods, as listed here:

Special

BesselI

compute the Bessel I function of a ComplexBox

BesselJ

compute the Bessel J function of a ComplexBox

BesselK

compute the Bessel K function of a ComplexBox

BesselY

compute the Bessel Y function of a ComplexBox

ChebyshevT

compute the Chebyshev T function of a ComplexBox

ChebyshevU

compute the Chebyshev U function of a ComplexBox

Chi

compute the hyperbolic cosine integral of a ComplexBox

Ci

compute the cosine integral of a ComplexBox

dilog

compute the dilogarithm of a ComplexBox

Ei

compute the exponential integral of a ComplexBox

GAMMA

compute the GAMMA function of a ComplexBox

HermiteH

compute the Hermite H function of a ComplexBox

hypergeom

general hypergeometric function of a ComplexBox

KummerU

Kummer U function of a ComplexBox

LegendreP

Legendre P function of a ComplexBox

LegendreQ

Legendre Q function of a ComplexBox

Li

compute the logarithmic integral of a ComplexBox

lnGAMMA

compute the log-GAMMA function of a ComplexBox

Psi

compute the digamma function of a ComplexBox

rGAMMA

compute the reciprocal GAMMA function of a ComplexBox

Shi

compute the hyperbolic sine integral of a ComplexBox

Si

compute the sine integral of a ComplexBox

Zeta

compute the Riemann zeta function of a ComplexBox

Compatibility

• 

The ComplexBox command was introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

BoxPrecision

ComplexBox[Arithmetic]

ComplexBox[Circular]

ComplexBox[Elementary]

ComplexBox[Hyperbolic]

ComplexBox[Predicates]

RealBox