DEtools
AreSimilar
test if two hyperexponential functions are similar
Calling Sequence
Parameters
Description
Examples
References
AreSimilar(H1, H2, x)
H1
-
hyperexponential function of x
H2
x
variable
Let H1,H2 be hyperexponential functions of x over a field K of characteristic 0. The AreSimilar(H1,H2,x) command returns true if H1⁡x and H2⁡x are similar. Otherwise, it returns false.
H1 and H2 are similar if their ratio can be written as the product of a rational function and a constant in some extension of K.
with⁡DEtools:
H≔exp⁡Int⁡2⁢x−7x+42,x⁢x6+16⁢x5+103⁢x4+327⁢x3+647⁢x2+737⁢x+194x−12⁢x+24⁢x+42
H≔ⅇ∫2⁢x−7x+42ⅆx⁢x6+16⁢x5+103⁢x4+327⁢x3+647⁢x2+737⁢x+194x−12⁢x+24⁢x+42
H1,H2≔ReduceHyperexp⁡H,x:
−24⁢x3+143⁢x2+292⁢x+216⁢ⅇ∫−15x+42ⅆxx−1⁢x+23
x3+17⁢x2+88⁢x−231⁢ⅇ∫−23−2⁢xx+42ⅆxx−1
AreSimilar⁡H,H2,x
true
AreSimilar⁡H1,H2,x
Geddes, Keith; Le, Ha; and Li, Ziming. "Differential rational normal forms and a reduction algorithm for hyperexponential functions." Proceedings of ISSAC 2004. ACM Press. (2004): 183-190.
See Also
DEtools[RationalCanonicalForm]
DEtools[ReduceHyperexp]
SumTools[Hypergeometric][AreSimilar]
Download Help Document