DEtools
Desingularize
desingularize a linear differential operator
Calling Sequence
Parameters
Description
Examples
References
Compatibility
Desingularize(L, Dx, x, func)
L
-
polynomial in Dx with coefficients that are polynomials in x
Dx
variable, denoting the differential operator w.r.t. x
x
variable
func
(optional) procedure
Let L be a linear differential operator, given as a polynomial in Dx with univariate polynomial coefficients in x over a field k of characteristic zero. The command Desingularize(L,Dx,x) constructs a linear differential operator R such that any solution of L⁡y=0 is also a solution of R⁡y=0 and R has no apparent singularities. The operator R is said to maximally desingularize L, and will be right divisible by L over the field k⁡x.
An apparent singularity is a point p where the leading coefficient of L vanishes, yet p is not a pole of any holomorphic solution of L⁡y=0. In this case there will exist d linearly independent solutions at p where d is the order of L.
A function may be specified using the optional argument func. It is applied to the coefficients of the collected result. Often simplify or factor will be used.
with⁡DEtools:
For the given differential operator L
L≔24⁢x3−18⁢x4+x8+6⁢x5−x6⁢Dx7+6⁢x5+72⁢x3−30⁢x4−8⁢x7−72⁢x2⁢Dx6+−144⁢x2+36⁢x6+72⁢x3−2⁢x7+144⁢x−18⁢x4⁢Dx5+24⁢x3+36⁢x6+144⁢x−144−72⁢x2−120⁢x5−8⁢x7−x10+x8⁢Dx4+−24⁢x5−x10−6⁢x7+x8+18⁢x6⁢Dx3+36⁢x5−6⁢x6−72⁢x4+2⁢x9⁢Dx2+−36⁢x4+12⁢x5−10⁢x8+2⁢x9⁢Dx+64⁢x7−12⁢x4−32⁢x8+8⁢x9+x12−x10
L≔x8−x6+6⁢x5−18⁢x4+24⁢x3⁢Dx7+−8⁢x7+6⁢x5−30⁢x4+72⁢x3−72⁢x2⁢Dx6+−2⁢x7+36⁢x6−18⁢x4+72⁢x3−144⁢x2+144⁢x⁢Dx5+−x10+x8−8⁢x7+36⁢x6−120⁢x5+24⁢x3−72⁢x2+144⁢x−144⁢Dx4+−x10+x8−6⁢x7+18⁢x6−24⁢x5⁢Dx3+2⁢x9−6⁢x6+36⁢x5−72⁢x4⁢Dx2+2⁢x9−10⁢x8+12⁢x5−36⁢x4⁢Dx+64⁢x7−12⁢x4−32⁢x8+8⁢x9+x12−x10
compute a desingularizing operator for L:
M≔Desingularize⁡L,Dx,x,factor
M≔1728252⁢Dx8+54154⁢x7+161694⁢x6+263753⁢x5+452649⁢x4−324882⁢x3+1728252⁢Dx7+−433232⁢x6−1293552⁢x5−2218332⁢x4−2969808⁢x3+974646⁢x2+1728252⁢Dx6+−108308⁢x6+1626156⁢x5+5185170⁢x4+9891042⁢x3+9684162⁢x2−1949292⁢x+1728252⁢Dx5+−54154⁢x9−161694⁢x8−263753⁢x7−560957⁢x6+976266⁢x5−2924106⁢x4−10379136⁢x3−27461604⁢x2−45113328⁢x+3677544⁢Dx4−x⁢54154⁢x8+161694⁢x7+263753⁢x6+452649⁢x5−324882⁢x4+1728252⁢x+13826016⁢Dx3+108308⁢x8+323388⁢x7+635814⁢x6+253914⁢x5+974646⁢x4−1728252⁢x2−10369512⁢x−20739024⁢Dx2+108308⁢x8−218152⁢x7−981126⁢x6−2600232⁢x5−520824⁢x4−1728252⁢x2−6913008⁢x−10369512⁢Dx+54154⁢x11+161694⁢x10+263753⁢x9+560957⁢x8−759650⁢x7+538258⁢x6+2595900⁢x5+10387932⁢x4+31684620⁢x3−1728252⁢x2−3456504⁢x−3456504
Q,R≔op⁡DEtoolsrightdivision⁡M,L,Dx,x:
Hence, R=Q·L+R where
Q
1728252⁢Dxx3⁢x5−x3+6⁢x2−18⁢x+24+54154⁢x7+161694⁢x6+263753⁢x5+452649⁢x4−324882⁢x3+1728252x3⁢x5−x3+6⁢x2−18⁢x+24
R
0
Tsai, H. "Weyl closure of a linear differential operator." Journal of Symbolic Computation Vol. 29 No. 4-5 (2000): 747-775.
Chyzak, F.; Dumas, P.; Le, H.Q.; Martins, J.; Mishna, M.; Salvy, B. "Taming apparent singularities via Ore closure." In preparation.
The DEtools[Desingularize] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
See Also
DEtools/Closure
Groebner
Ore_algebra
Download Help Document