DEtools
PolynomialNormalForm
construct the differential polynomial normal form of a rational function
Calling Sequence
Parameters
Description
Examples
References
PolynomialNormalForm(F, x)
F
-
rational function of x
x
variable
Let F be a rational function of x over a field K of characteristic 0. The PolynomialNormalForm(F,x) command constructs the differential polynomial normal form for F.
The output is a sequence of 3 elements a,b,c where a,b,c are polynomials over K such that:
F=ab+ⅆⅆxcc.
gcd⁡b,a−i⁢ⅆbⅆx=1 for all non-negative integers i.
gcd⁡b,c=1.
with⁡DEtools:
F≔4x−2+4x+1−3x+12−9x−12−9⁢x2+12x3+4⁢x−2+1x3+4⁢x−22
a,b,c≔PolynomialNormalForm⁡F,x
a,b,c≔−5⁢x9−16⁢x8−14⁢x7−134⁢x6+39⁢x5−331⁢x4+96⁢x3+32⁢x2+16⁢x−7,x+12⁢x−12⁢x3+4⁢x−22,x−24
Check the result:
nF≔ab+diff⁡c,xc:
Testzero⁡normal⁡F−nF
true
res≔resultant⁡b,a−j⁢diff⁡b,x,x:
H≔select⁡type,solve⁡res,j,nonnegint:
evalb⁡H=∅andgcd⁡b,c=1
Almkvist, G, and Zeilberger, D. "The method of differentiating under the integral sign." Journal of Symbolic Computation. Vol. 10. (1990): 571-591.
See Also
DEtools[Gosper]
DEtools[RationalCanonicalForm]
SumTools[Hypergeometric][PolynomialNormalForm]
Download Help Document