DEtools
ode_int_y
given the nth order linear ODE satisfied by y(x), compute the nth order linear ODE satisfied by int(y(x),x)
ode_y1
given the nth order linear ODE satisfied by y(x), compute the nth order linear ODE satisfied by diff(y(x),x)
Calling Sequence
Parameters
Description
Examples
ode_int_y(ode, y(x))
ode_y1(ode, y(x))
ode
-
ordinary differential equation satisfied by y(x)
y(x)
unknown function of one variable
Given a nth order linear ODE for y⁡x, the ode_int_y and ode_y1 commands respectively compute the nth order linear ODE satisfied by ∫y⁡xⅆx and ⅆⅆxy⁡x.
For enhanced input output use DEtools[diff_table] and PDEtools[declare].
with⁡DEtools,diff_table,ode_int_y,ode_y1
diff_table,ode_int_y,ode_y1
PDEtoolsdeclare⁡prime=x,y⁡x,c⁡x
derivatives with respect to⁢x⁢of functions of one variable will now be displayed with '
y⁡x⁢will now be displayed as⁢y
c⁡x⁢will now be displayed as⁢c
Y≔diff_table⁡y⁡x:
PDEtoolsdeclare⁡y⁡x,c⁡x,prime=x
Now, if y satisfies
c0⁡x⁢Y+c1⁡x⁢Yx+c2⁡x⁢Yx,x+Yx,x,x,x=0
c0⁢y+c1⁢y'+c2⁢y''+y''''=0
then the derivative of y satisfies
DEtoolsode_y1⁡=0
y''''−c0 '⁢y'''c0+c2⁢y''−c0 '⁢c2−c1⁢c0−c2 '⁢c0⁢y'c0−c0 '⁢c1−c02−c1 '⁢c0⁢yc0=0
and so, the integral of the function y in the equation above satisfy this other ODE (the starting point)
DEtoolsode_int_y⁡,y⁡x=0
See Also
Download Help Document