DataSeries/FillMissing
fill missing values in a DataSeries
DataSeries/DropMissing
drop missing values in a DataSeries
Calling Sequence
Parameters
Description
Examples
Compatibility
FillMissing(ds, fill, missopt, methopt)
DropMissing(ds, missopt)
ds
-
a DataSeries object
fill
(optional) a value to replace missing values
missopt
(optional) equation of the form missing = m1, where m1 can be any expression
methopt
(optional) equation of the form method = m2, where m2 can be forward or backward
The FillMissing command creates a copy of a DataSeries where missing values are replaced with a value of your choice.
The DropMissing command creates a copy of a DataSeries where missing values are removed.
For both commands, by default, what is a missing value is determined by the data type of the DataSeries:
For floating point data types, the missing value is the appropriate version of undefined. For example, DataSeries objects with data type float[8] use Float(undefined).
For hardware integer data types integer[k], where k is 1, 2, 4, or 8, the missing value is 0. (Such DataSeries cannot store non-integer values, so one cannot use a version of undefined here.)
For string DataSeries objects, the empty string is the missing value.
For DataSeries of type truefalseFAIL and boolean_constant, the missing value is FAIL.
For all other data types, the missing value is undefined.
In order to use a different value as the missing value, you can use the option missing = m1. If you supply this option, then any occurrence of m1 will be considered missing.
For the FillMissing command, by default, the value used to replace a missing value depends on the data type of the column it occurs in:
For all numeric data types, including floating point and integer, the default value is 0.
For the data type string, the default value is the empty string.
For the data types truefalse, truefalseFAIL, boolean, and boolean_constant, the default value is false.
The fill argument, if it is specified, overrides the value used to replace a missing value.
If the method option is used, then any missing values will be replaced either by the last non-missing value before it (with method = forward or method = "forward"), or the first non-missing value after it (with method = backward or method = "backward"). If no such value is available (for example, if the first value is missing and method = forward is specified), then the value used is determined in the same way as if the method option were not specified.
For DataSeries objects of hardware integer type and string columns, the default missing value and the default fill value are the same. Using the FillMissing command on such DataSeries has no effect, unless one or more of the fill, missopt, and methopt arguments are specified.
ds1≔DataSeries⁡8,9,0
ds1≔182930
ds2≔DataSeries⁡8,9,0,datatype=integer4
ds2≔182930
ds3≔DataSeries⁡8.,9.,Float⁡undefined,datatype=float8
ds3≔18.29.3Float⁡undefined
DataSeries ds1 has declared type anything, and ds2 has type integer[4]. This means that, for a value in ds1 to be considered missing, it would have to be undefined; in ds2, the value considered missing is 0. Consequently, the DropMissing command will remove a value from ds2, but not from ds1. DataSeries object ds3 also contains the default missing value for its data type, float[8], and consequently it is also removed.
DropMissing⁡ds1
182930
DropMissing⁡ds2
1829
DropMissing⁡ds3
18.29.
With FillMissing, one can only see a change in ds3 by default.
FillMissing⁡ds1
FillMissing⁡ds2
FillMissing⁡ds3
18.29.30.
If we specify a missing value manually, for example, 8, then DropMissing removes that exact value. This applies to ds1 and ds2, but not to ds3, which contains 8. but not 8.
DropMissing⁡ds1,missing=8
2930
DropMissing⁡ds2,missing=8
DropMissing⁡ds3,missing=8
18.29.3Float⁡undefined
For FillMissing, we can specify the value to be used for replacing missing values. This is the fill argument. In the following example, we specify the value 6. This is stored in the last entries of ds2 and ds3; in ds3, it is automatically changed to the floating point value 6., because of the data type of that DataSeries object.
FillMissing⁡ds1,6
FillMissing⁡ds2,6
182936
FillMissing⁡ds3,6
18.29.36.
If we specify the option method = backward, then missing values are replaced with later values.
FillMissing⁡ds1,missing=9,method=backward
182030
FillMissing⁡ds2,missing=9,method=backward
FillMissing⁡ds3,missing=9,method=backward
18.2Float⁡undefined3Float⁡undefined
The DataSeries/FillMissing and DataSeries/DropMissing commands were introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
DataFrame/DropMissing
DataFrame/FillMissing
DataSeries
DataSeries/Constructor
Download Help Document