DeepLearning
BucketizedColumn
bucketized feature column
Calling Sequence
Parameters
Description
Details
Examples
Compatibility
BucketizedColumn(fc,boundaries)
fc
-
feature column
boundaries
list of extended_numeric; boundaries for buckets
The BucketizedColumn(fc,boundaries) command creates a new feature column by assigning continuous data represented in fc into a discrete number of buckets defined by boundaries.
This function is part of the DeepLearning package, so it can be used in the short form BucketizedColumn(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[BucketizedColumn](..).
The implementation of BucketizedColumn uses the tf.feature_column.bucketized_column function from the TensorFlow Python API Documentation. Consult the TensorFlow API documentation for tf.feature_column.bucketized_column for more information.
Define a feature which takes a single value, in this case a physical measurement from a flower. Then assign it to one of five buckets.
with⁡DeepLearning:
fc≔NumericColumn⁡PetalLength,shape=1,datatype=float8
fc≔Feature ColumnNumericColumn(key='PetalLength', shape=(1,), default_value=None, dtype=tf.float64, normalizer_fn=None)
bc≔BucketizedColumn⁡fc,2,3.5,5,6.5
bc≔Feature ColumnBucketizedColumn(source_column=NumericColumn(key='PetalLength', shape=(1,), default_value=None, dtype=tf.float64, normalizer_fn=None), boundaries=(2, 3.5, 5, 6.5))
The DeepLearning[BucketizedColumn] command was introduced in Maple 2018.
For more information on Maple 2018 changes, see Updates in Maple 2018.
See Also
DNNClassifier
Feature Column
Download Help Document