DenseLayer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DeepLearning

  

DenseLayer

  

create dense layer

 

Calling Sequence

Parameters

Options

Description

Details

Examples

Compatibility

Calling Sequence

DenseLayer(units,opts)

Parameters

units

-

positive integer

opts

-

one or more options as specified below

Options

• 

activation : string or symbol

  

Specifies the activation function to use, one of deserialize, elu, exponential, gelu, get, hard_sigmoid, linear, relu, selu, serialize, sigmoid, softmax, softplus, softsign, swish, or tanh. Default is linear, the identity function.

• 

inputshape : list of integers or the symbol auto

  

Shape of the input Tensor, not including the batch axis.

  

With the default value auto, the shape is inferred. If inference is not possible, an error is issued.

  

This option need only be specified when this layer is the first in a Sequential model.

• 

usebias : truefalse

  

Specifies whether to use a bias vector. Default is true.

Description

• 

The DenseLayer(units, opts) command creates a dense neural network layer with the dimensionality of the output space equal to units.

• 

This function is part of the DeepLearning package, so it can be used in the short form DenseLayer(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[DenseLayer](..).

Details

• 

The implementation of DenseLayer uses tf.keras.layers.Dense from the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.layers.Dense for more information.

Examples

withDeepLearning

AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros

(1)

v1Vector8,ii,datatype=float8

v11.2.3.4.5.6.7.8.

(2)

v2Vector8,1.0,1.0,5.0,11.0,19.0,29.0,41.0,55.0,datatype=float8

v2−1.1.5.11.19.29.41.55.

(3)

modelSequentialDenseLayer2,inputshape=1

modelDeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7f19f0d18290>

(4)

model:-Compileoptimizer=sgd&comma;loss=mean_squared_error

model:-Fitv1&comma;v2&comma;epochs=500

<Python object: <keras.src.callbacks.History object at 0x7f19e7f7c110>>

(5)

model:-Evaluate10&comma;30

loss=849.608520507812&comma;accuracy=0.

(6)

Compatibility

• 

The DeepLearning[DenseLayer] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

DeepLearning Overview