DropoutLayer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DeepLearning

  

DropoutLayer

  

create dropout layer

 

Calling Sequence

Parameters

Options

Description

Details

Examples

Compatibility

Calling Sequence

DropoutLayer(rate,opts)

Parameters

rate

-

positive number

opts

-

(optional) one or more keyword options described below

Options

• 

inputshape : list of integers or the symbol auto

  

Shape of the input Tensor, not including the batch axis.

  

With the default value auto, the shape is inferred. If inference is not possible, an error is issued.

  

This option need only be specified when this layer is the first in a Sequential model.

Description

• 

DropoutLayer(rate,opts) creates a dropout layer with learning rate rate.

• 

This function is part of the DeepLearning package, so it can be used in the short form DropoutLayer(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[DropoutLayer](..).

Details

• 

The implementation of DropoutLayer uses tf.keras.layers.Dropout from the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.layers.Dropout for more information.

Examples

withDeepLearning

AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros

(1)

v1Vector8,ii,datatype=float8

v11.2.3.4.5.6.7.8.

(2)

v2Vector8,1.0,1.0,5.0,11.0,19.0,29.0,41.0,55.0,datatype=float8

v2−1.1.5.11.19.29.41.55.

(3)

modelSequentialDropoutLayer0.2,inputshape=1

modelDeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7fde5ac2c190>

(4)

model:-Compileloss=mean_squared_error

model:-Fitv1&comma;v2&comma;epochs=500

<Python object: <keras.src.callbacks.History object at 0x7fde664cbf90>>

(5)

model:-Evaluate10&comma;30

loss=400.&comma;accuracy=0.

(6)

Compatibility

• 

The DeepLearning[DropoutLayer] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

DeepLearning Overview