DeepLearning/Model/Compile
compile model object
Calling Sequence
Parameters
Options
Description
Details
Examples
Compatibility
mdl:-Compile(opts)
mdl
-
a Model object
loss = string, function, or none
metrics = list of string
optimizer = string or symbol
Compile constructs an executable version of a Model which can be used for training, testing, and prediction.
The implementation of Compile uses the compile method from tf.keras.Model in the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.Model for more information on its use during TensorFlow computations.
with⁡DeepLearning
AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros
v1≔Vector⁡8,i↦i,datatype=float8
v1≔1.2.3.4.5.6.7.8.
v2≔Vector⁡8,−1.0,1.0,5.0,11.0,19.0,29.0,41.0,55.0,datatype=float8
v2≔−1.1.5.11.19.29.41.55.
model≔Sequential⁡DenseLayer⁡1,inputshape=1
model≔DeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7fc41e5060d0>
model:-Compile⁡optimizer=sgd,loss=mean_squared_error
model:-Fit⁡v1,v2,epochs=500
<Python object: <keras.src.callbacks.History object at 0x7fc41d06e8d0>>
model:-Evaluate⁡10,30
loss=1036.47521972656,accuracy=0.
The DeepLearning/Model/Compile command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
DeepLearning Overview
Download Help Document