Evaluate - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DeepLearning/Model/Evaluate

evaluate model object

 

Calling Sequence

Parameters

Options

Description

Details

Examples

Compatibility

Calling Sequence

mdl:-Evaluate(x, y, opts)

Parameters

mdl

-

a Model object

x

-

(optional) list, Array, DataFrame, DataSeries, Matrix, or Vector; input data

y

-

(optional) list, Array, DataFrame, DataSeries, Matrix, or Vector; target data

Options

• 

batchsize = posint or none

  

Number of samples per gradient update. If unspecified, batchsize will default to 32.

• 

steps = integer or none

  

Total number of steps (batches of samples) before declaring the evaluation round finished. Ignored with the default value of none.

Description

• 

Evaluate evaluates a Model on a particular set of inputs.

Details

• 

The implementation of Evaluate uses the evaluate method from tf.keras.Model in the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.Model for more information on its use during TensorFlow computations.

Examples

withDeepLearning

AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros

(1)

v1Vector8,ii,datatype=float8

v11.2.3.4.5.6.7.8.

(2)

v2Vector8,1.0,1.0,5.0,11.0,19.0,29.0,41.0,55.0,datatype=float8

v2−1.1.5.11.19.29.41.55.

(3)

modelSequentialDenseLayer1,inputshape=1

modelDeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7ff704149710>

(4)

model:-Compileoptimizer=sgd&comma;loss=mean_squared_error

model:-Fitv1&comma;v2&comma;epochs=500

<Python object: <keras.src.callbacks.History object at 0x7ff7023e0a50>>

(5)

model:-Evaluate10&comma;30

loss=1039.50793457031&comma;accuracy=0.

(6)

Compatibility

• 

The DeepLearning/Model/Evaluate command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

DeepLearning Overview