DeepLearning/Model/Evaluate
evaluate model object
Calling Sequence
Parameters
Options
Description
Details
Examples
Compatibility
mdl:-Evaluate(x, y, opts)
mdl
-
a Model object
x
(optional) list, Array, DataFrame, DataSeries, Matrix, or Vector; input data
y
(optional) list, Array, DataFrame, DataSeries, Matrix, or Vector; target data
batchsize = posint or none
Number of samples per gradient update. If unspecified, batchsize will default to 32.
steps = integer or none
Total number of steps (batches of samples) before declaring the evaluation round finished. Ignored with the default value of none.
Evaluate evaluates a Model on a particular set of inputs.
The implementation of Evaluate uses the evaluate method from tf.keras.Model in the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.Model for more information on its use during TensorFlow computations.
with⁡DeepLearning
AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros
v1≔Vector⁡8,i↦i,datatype=float8
v1≔1.2.3.4.5.6.7.8.
v2≔Vector⁡8,−1.0,1.0,5.0,11.0,19.0,29.0,41.0,55.0,datatype=float8
v2≔−1.1.5.11.19.29.41.55.
model≔Sequential⁡DenseLayer⁡1,inputshape=1
model≔DeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7ff704149710>
model:-Compile⁡optimizer=sgd,loss=mean_squared_error
model:-Fit⁡v1,v2,epochs=500
<Python object: <keras.src.callbacks.History object at 0x7ff7023e0a50>>
model:-Evaluate⁡10,30
loss=1039.50793457031,accuracy=0.
The DeepLearning/Model/Evaluate command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
DeepLearning Overview
Download Help Document