SingularValueDecomposition - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DeepLearning,Tensor,SingularValueDecomposition

compute singular value decomposition of a Tensor

 

Calling Sequence

Parameters

Options

Description

Examples

Compatibility

Calling Sequence

SingularValueDecomposition(x,opts)

Parameters

x

-

Tensor

opts

-

zero or more options as specified below

Options

• 

name=string

The value of option name specifies an optional name for this Tensor, to be displayed in output and when visualizing the dataflow graph.

Description

• 

The SingularValueDecomposition(x,opts) or SVD(x,opts) commands compute a singular value decomposition of one or more matrices in x

Examples

withDeepLearning:

tConstantLinearAlgebra:-VandermondeMatrix3.,5.,7.

tDeepLearning TensorShape: [3, 3]Data Type: float[8]

(1)

SingularValueDecompositiont

DeepLearning TensorShape: [3]Data Type: float[8],DeepLearning TensorShape: [3, 3]Data Type: float[8],DeepLearning TensorShape: [3, 3]Data Type: float[8]

(2)

Compatibility

• 

The DeepLearning,Tensor,SingularValueDecomposition command was introduced in Maple 2018.

• 

For more information on Maple 2018 changes, see Updates in Maple 2018.

See Also

DeepLearning Overview

LinearAlgebra[SingularValues]

Tensor