betainc - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DeepLearning,Tensor,betainc

compute the incomplete beta function on entries in a Tensor

DeepLearning,Tensor,expm1

compute the expm1 of entries in a Tensor

DeepLearning,Tensor,lbeta

compute the lbeta of entries in a Tensor

DeepLearning,Tensor,lgamma

compute the lgamma of entries in a Tensor

DeepLearning,Tensor,log1p

compute the log1p of entries in a Tensor

DeepLearning,Tensor,log_sigmoid

compute the log_sigmoid of entries in a Tensor

DeepLearning,Tensor,rsqrt

compute the rsqrt of entries in a Tensor

DeepLearning,Tensor,sigmoid

compute the sigmoid of entries in a Tensor

 

Calling Sequence

Parameters

Options

Description

Examples

Compatibility

Calling Sequence

betainc(t,u,v,opts)   expm1(t,opts)

lbeta(t,opts)         lgamma(t,opts)

log1p(t,opts)         log_sigmoid(t,opts)

rsqrt(t,opts)         sigmoid(t,opts)

Parameters

t

-

Tensor

u

-

Tensor

v

-

Tensor

opts

-

zero or more options as specified below

Options

• 

name=string

The value of option name specifies an optional name for this Tensor, to be displayed in output and when visualizing the dataflow graph.

Description

• 

The betainc(t,u,v,opts) command computes the incomplete Beta function of entries in a Tensor.

• 

The expm1(t,opts) command computes the complex expm1 of entries in a Tensor.

• 

The lbeta(t,opts) command computes the lbeta of entries in a Tensor.

• 

The lgamma(t,opts) command computes the lgamma of entries in a Tensor.

• 

The log1p(t,opts) command computes the log1p of entries in a Tensor.

• 

The log_sigmoid(t,opts) command computes the log-sigmoid of entries in a Tensor.

• 

The rsqrt(t,opts) command computes the reciprocal of the square root of entries in a Tensor.

• 

The sigmoid(t,opts) command computes the sigmoid of entries in a Tensor.

Examples

withDeepLearning:

XMatrix11.0,18.3,12.1,20.3,datatype=float8

X11.18.300000000000012.100000000000020.3000000000000

(1)

YMatrix96.0,12.8,8.7,27.6,datatype=float8

Y96.12.80000000000008.7000000000000027.6000000000000

(2)

ZMatrix1.,1.,1.,1.,datatype=float8

Z1.1.1.1.

(3)

t1ConstantX

t1DeepLearning TensorShape: [2, 2]Data Type: float[8]

(4)

t2ConstantY

t2DeepLearning TensorShape: [2, 2]Data Type: float[8]

(5)

t3ConstantZ

t3DeepLearning TensorShape: [2, 2]Data Type: float[8]

(6)

betainct1,t2,t3

betaincDeepLearning TensorShape: [2, 2]Data Type: float[8],DeepLearning TensorShape: [2, 2]Data Type: float[8],DeepLearning TensorShape: [2, 2]Data Type: float[8]

(7)

expm1t1

expm1DeepLearning TensorShape: [2, 2]Data Type: float[8]

(8)

lbetat1

lbetaDeepLearning TensorShape: [2, 2]Data Type: float[8]

(9)

lgammat1

lgammaDeepLearning TensorShape: [2, 2]Data Type: float[8]

(10)

log1pt1

log1pDeepLearning TensorShape: [2, 2]Data Type: float[8]

(11)

log_sigmoidt2

log_sigmoidDeepLearning TensorShape: [2, 2]Data Type: float[8]

(12)

rsqrtt2

rsqrtDeepLearning TensorShape: [2, 2]Data Type: float[8]

(13)

sigmoidt2

sigmoidDeepLearning TensorShape: [2, 2]Data Type: float[8]

(14)

Compatibility

• 

The DeepLearning,Tensor,betainc, DeepLearning,Tensor,expm1, DeepLearning,Tensor,lbeta, DeepLearning,Tensor,lgamma, DeepLearning,Tensor,log1p, DeepLearning,Tensor,log_sigmoid, DeepLearning,Tensor,rsqrt and DeepLearning,Tensor,sigmoid commands were introduced in Maple 2018.

• 

For more information on Maple 2018 changes, see Updates in Maple 2018.

See Also

DeepLearning Overview

Tensor