DeepLearning,Tensor,betainc
compute the incomplete beta function on entries in a Tensor
DeepLearning,Tensor,expm1
compute the expm1 of entries in a Tensor
DeepLearning,Tensor,lbeta
compute the lbeta of entries in a Tensor
DeepLearning,Tensor,lgamma
compute the lgamma of entries in a Tensor
DeepLearning,Tensor,log1p
compute the log1p of entries in a Tensor
DeepLearning,Tensor,log_sigmoid
compute the log_sigmoid of entries in a Tensor
DeepLearning,Tensor,rsqrt
compute the rsqrt of entries in a Tensor
DeepLearning,Tensor,sigmoid
compute the sigmoid of entries in a Tensor
Calling Sequence
Parameters
Options
Description
Examples
Compatibility
betainc(t,u,v,opts) expm1(t,opts)
lbeta(t,opts) lgamma(t,opts)
log1p(t,opts) log_sigmoid(t,opts)
rsqrt(t,opts) sigmoid(t,opts)
t
-
Tensor
u
v
opts
zero or more options as specified below
name=string
The value of option name specifies an optional name for this Tensor, to be displayed in output and when visualizing the dataflow graph.
The betainc(t,u,v,opts) command computes the incomplete Beta function of entries in a Tensor.
The expm1(t,opts) command computes the complex expm1 of entries in a Tensor.
The lbeta(t,opts) command computes the lbeta of entries in a Tensor.
The lgamma(t,opts) command computes the lgamma of entries in a Tensor.
The log1p(t,opts) command computes the log1p of entries in a Tensor.
The log_sigmoid(t,opts) command computes the log-sigmoid of entries in a Tensor.
The rsqrt(t,opts) command computes the reciprocal of the square root of entries in a Tensor.
The sigmoid(t,opts) command computes the sigmoid of entries in a Tensor.
with⁡DeepLearning:
X≔Matrix⁡11.0,18.3,12.1,20.3,datatype=float8
X≔11.18.300000000000012.100000000000020.3000000000000
Y≔Matrix⁡96.0,12.8,8.7,27.6,datatype=float8
Y≔96.12.80000000000008.7000000000000027.6000000000000
Z≔Matrix⁡1.,1.,1.,1.,datatype=float8
Z≔1.1.1.1.
t1≔Constant⁡X
t1≔DeepLearning TensorShape: [2, 2]Data Type: float[8]
t2≔Constant⁡Y
t2≔DeepLearning TensorShape: [2, 2]Data Type: float[8]
t3≔Constant⁡Z
t3≔DeepLearning TensorShape: [2, 2]Data Type: float[8]
betainc⁡t1,t2,t3
betainc⁡DeepLearning TensorShape: [2, 2]Data Type: float[8],DeepLearning TensorShape: [2, 2]Data Type: float[8],DeepLearning TensorShape: [2, 2]Data Type: float[8]
expm1⁡t1
expm1⁡DeepLearning TensorShape: [2, 2]Data Type: float[8]
lbeta⁡t1
lbeta⁡DeepLearning TensorShape: [2, 2]Data Type: float[8]
lgamma⁡t1
lgamma⁡DeepLearning TensorShape: [2, 2]Data Type: float[8]
log1p⁡t1
log1p⁡DeepLearning TensorShape: [2, 2]Data Type: float[8]
log_sigmoid⁡t2
log_sigmoid⁡DeepLearning TensorShape: [2, 2]Data Type: float[8]
rsqrt⁡t2
rsqrt⁡DeepLearning TensorShape: [2, 2]Data Type: float[8]
sigmoid⁡t2
sigmoid⁡DeepLearning TensorShape: [2, 2]Data Type: float[8]
The DeepLearning,Tensor,betainc, DeepLearning,Tensor,expm1, DeepLearning,Tensor,lbeta, DeepLearning,Tensor,lgamma, DeepLearning,Tensor,log1p, DeepLearning,Tensor,log_sigmoid, DeepLearning,Tensor,rsqrt and DeepLearning,Tensor,sigmoid commands were introduced in Maple 2018.
For more information on Maple 2018 changes, see Updates in Maple 2018.
See Also
DeepLearning Overview
Download Help Document