Det
inert determinant
Calling Sequence
Parameters
Description
Examples
Det(A)
A
-
Matrix
The Det function is a placeholder for representing the determinant of the matrix A. It is used in conjunction with mod and modp1 which define the coefficient domain as described below.
The call Det⁡Amodm computes the determinant of the matrix Amodm in characteristic m which may not not be prime. The entries in A may be integers, rationals, polynomials, or in general, rational functions in parameters over a finite field.
The call modp1⁡Det⁡A,p computes the determinant of the matrix Amodp where p is a prime integer and the entries of A are modp1 polynomials using fraction-free Gaussian elimination.
A≔Matrix⁡2,3,1,3,2,3,0,3,2
A≔231323032
Det⁡Amod3
2
Det⁡Amod6
5
C≔Matrix⁡x−2,3,1,3,x−2,3,0,3,x−2
C≔x−2313x−2303x−2
Det⁡Cmod3
x3+1
Charpoly⁡A,xmod3
alias⁡α=RootOf⁡x4+x+1:
A≔Matrix⁡1,α,α2,α,1,α,α2,α,1
A≔1αα2α1αα2α1
Det⁡Amod2
α
A≔Matrix⁡1−α,αt,1−α⁢t,1+α,α⁢t,1+α⁢t,α,1−αt,α⁢t
A≔1−ααt−α⁢t+11+αα⁢tα⁢t+1α1−αtα⁢t
collect⁡Det⁡Amod2,t
α2⁢t2+α2⁢t+α2+α2t
See Also
Charpoly
LinearAlgebra[Determinant]
LinearAlgebra[Modular]
mod
modp1
Modular[Determinant]
Download Help Document