ComposeTransformations - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : ComposeTransformations

DifferentialGeometry

  

ComposeTransformations

  

compose a sequence of two or more transformations

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ComposeTransformation(Phi1, Phi2, Phi3, ...)

Parameters

Phi1, Phi2, Phi3

-

transformations

Description

• 

ComposeTransformation(Phi1, Phi2, Phi3, ...) returns the composition of the transformations Phi1, Phi2, Phi3, ..., that is, the transformation Psi = Phi1 o Phi2 o Phi3 ....  The domain frame of Phi1 must coincide with the range frame of Phi2, the domain frame of Phi2 must coincide with the range of frame of Phi3, and so on.

• 

This command is part of the DifferentialGeometry package, and so can be used in the form ComposeTransformations(...) only after executing the command with(DifferentialGeometry).  It can always be used in the long form DifferentialGeometry:-ComposeTransformations.

Examples

withDifferentialGeometry:

 

Example 1.

Define some manifolds.

DGsetupx,y,M:DGsetupu,v,N:DGsetupt,P:DGsetupx1,x2,x3,Q:

 

Define transformations F: M -> N;  G: P -> M;  H: N -> Q.

FTransformationM,N,u=3x+2y,v=xy

Fu=3x+2y,v=xy

(1)

GTransformationP,M,x=cost,y=sint

Gx=cost,y=sint

(2)

HTransformationN,Q,x1=u,x2=v,x3=1

Hx1=u,x2=v,x3=1

(3)

 

Compute the compositions F o G, H o F and H o F o G.

ComposeTransformationsF,G

u=3cost+2sint,v=costsint

(4)

ComposeTransformationsH,F

x1=3x+2y,x2=xy,x3=1

(5)

ComposeTransformationsH,F,G

x1=3cost+2sint,x2=costsint,x3=1

(6)

 

Example 2.

We can express the transformation T: P -> P as the composition of 3 transformations A, B, C.

TTransformationP,P,t=sqrtsint+2

Tt=sint+2

(7)

ATransformationP,P,t=sint

At=sint

(8)

BTransformationP,P,t=t+2

Bt=t+2

(9)

CTransformationP,P,t=sqrtt

Ct=t

(10)

SComposeTransformationsC,B,A

St=sint+2

(11)

Tools:-DGequalT,S

true

(12)

 

Example 3.

We can check that the transformation K is the inverse of the transformation F.

KTransformationN,M,x=25v+15u,y=15u35v

Kx=2v5+u5,y=u53v5

(13)

ComposeTransformationsF,K

u=u,v=v

(14)

ComposeTransformationsK,F

x=x,y=y

(15)

 

Example 4.

If pi: E -> M is a fiber bundle, then a section s of E is a transformation s: M -> E such that pi o s = identity on M.

Check that the map s is a section for E.

DGsetupu,v,w,E:DGsetupx,y,M:

piTransformationE,M,x=uv+w2,y=u2+w2

πx=uv+w2,y=u2+w2

(16)

sTransformationM,E,u=sqrty,v=xsqrty,w=0

su=y,v=xy,w=0

(17)

ComposeTransformationspi,s

x=x,y=y

(18)

See Also

DifferentialGeometry

Tools

ApplyTransformation

DGequal

InverseTransformation

Transformation

PDEtools[dchange]

Physics[TransformCoordinates]

Physics