DifferentialGeometry
ExteriorDerivative
take the exterior derivative of a differential form
Calling Sequence
Parameters
Description
Examples
ExteriorDerivative(omega)
omega
-
a Maple expression or a differential form
The exterior derivative of a differential p-form omega is a differential form d(omega) of degree p + 1. There are two standard ways to intrinsically define the exterior derivative d.
The exterior derivative can be defined directly in terms of the Lie bracket. For a 1-form alpha and a 2-form beta this definition is:
d(alpha)(X, Y) = X(alpha(Y)) - Y(alpha(X)) - alpha([X, Y]),
d(beta)(X, Y, Z) = X(beta(Y, Z)) - Y(beta(X, Z)) + Z(beta(X, Y)) - X(beta([Y, Z])) + Y(beta([X, Z ])) - Z(beta([X, Y])),
where X, Y, Z are vector fields. Most of the references listed on the DifferentialGeometry References page contain the general formula for the exterior derivative of a p-form.
Alternatively, d can be defined uniquely as that linear operator acting on differential forms such that:
[i] for functions f, d(f)(X) = X(f), where X is any vector field;
[ii] d(alpha &w beta) = d(alpha) &w beta + (- 1)^p alpha &w d(beta), where alpha and beta are differential forms and p is the degree of alpha; and
[iii] d(d(alpha)) = 0.
The explicit coordinate formulas for the exterior derivatives of a function, a 1-form and a 2-form in 3 dimensions are given in Example 1.
The ExteriorDerivative command can also be applied to a list of differential forms.
This command is part of the DifferentialGeometry package, and so can be used in the form ExteriorDerivative(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-ExteriorDerivative.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
We initialize a 3-dimensional manifold with coordinates [x, y, z].
We use the declare command in PDEtools to display the partial derivatives of the functions a(x, y, z), b(x, y, z) and c(x, y, z) in compact form.
DGsetup⁡x,y,z,M:
PDEtoolsdeclare⁡a⁡x,y,z,b⁡x,y,z,c⁡x,y,z
a⁡x,y,z⁢will now be displayed as⁢a
b⁡x,y,z⁢will now be displayed as⁢b
c⁡x,y,z⁢will now be displayed as⁢c
The exterior derivative of a function:
ExteriorDerivative⁡a⁡x,y,z
ax⁢dx+ay⁢dy+az⁢dz
The exterior derivative of a 1-form:
ω1≔evalDG⁡a⁡x,y,z⁢dx+b⁡x,y,z⁢dy+c⁡x,y,z⁢dz
ω1≔a⁢dx+b⁢dy+c⁢dz
ExteriorDerivative⁡ω1
−−bx+ay⁢dx⁢⋀⁢dy−−cx+az⁢dx⁢⋀⁢dz−−cy+bz⁢dy⁢⋀⁢dz
The exterior derivative of a 2-form:
ω2≔evalDG⁡c⁡x,y,z⁢dx&wdy−b⁡x,y,z⁢dx&wdz+a⁡x,y,z⁢dy&wdz
ω2≔c⁢dx⁢⋀⁢dy−b⁢dx⁢⋀⁢dz+a⁢dy⁢⋀⁢dz
ExteriorDerivative⁡ω2
ax+by+cz⁢dx⁢⋀⁢dy⁢⋀⁢dz
Example 2.
By way of an example, we illustrate the fact that d^2 = 0.
ω3≔evalDG⁡exp⁡y⁢cos⁡z⁢dx+ln⁡x⁢sin⁡y⁢dz
ω3≔ⅇy⁢cos⁡z⁢dx+ln⁡x⁢sin⁡y⁢dz
ω4≔ExteriorDerivative⁡ω3
ω4≔−ⅇy⁢cos⁡z⁢dx⁢⋀⁢dy+ⅇy⁢sin⁡z⁢x+sin⁡y⁢dxx⁢⋀⁢dz+ln⁡x⁢cos⁡y⁢dy⁢⋀⁢dz
ExteriorDerivative⁡ω4
0⁢dx⁢⋀⁢dy⁢⋀⁢dz
Example 3.
The ExteriorDerivative command can also be applied to a list of forms or a matrix of forms.
ExteriorDerivative⁡y⁢dx,z⁢dx&wdy
−dx⁢⋀⁢dy,dx⁢⋀⁢dy⁢⋀⁢dz
A≔Matrix⁡y&multdx,z&multdy,0&multdx,dz
A≔y⁢dxz⁢dy0⁢dxdz
ExteriorDerivative⁡A
−dx⁢⋀⁢dy−dy⁢⋀⁢dz0⁢dx⁢⋀⁢dy0⁢dx⁢⋀⁢dy
Example 4.
The ExteriorDerivative command can also be used with adapted frames. First we define an adapted coframe for M.
Fr≔evalDG⁡x⁢dx+y⁢dy+z⁢dz,x⁢dy+y⁢dz,x⁢dz
Fr≔x⁢dx+y⁢dy+z⁢dz,x⁢dy+y⁢dz,x⁢dz
FrData≔FrameData⁡Fr,P
FrData≔d⁢Θ1=0,d⁢Θ2=Θ1⁢⋀⁢Θ2x2−y⁢Θ1⁢⋀⁢Θ3x3+x+z⁢Θ2⁢⋀⁢Θ3x3,d⁢Θ3=Θ1⁢⋀⁢Θ3x2−y⁢Θ2⁢⋀⁢Θ3x3
DGsetup⁡FrData
frame name: P
ExteriorDerivative⁡z
Θ3x
ExteriorDerivative⁡x⁢Θ1+y2⁢Θ2
y⁢y+1⁢Θ1x2⁢⋀⁢Θ2+−y3+x⁢z−y2⁢Θ1x3⁢⋀⁢Θ3+y2⁢3⁢x+z⁢Θ2x3⁢⋀⁢Θ3
Example 5.
The ExteriorDerivative command can be used with Lie algebras.
LD≔LieAlgebraData⁡x1,x3=x1,x1,x4=−x2,x2,x3=x2,x2,x4=x1,x1,x2,x3,x4,Alg1
LD≔e1,e3=e1,e1,e4=−e2,e2,e3=e2,e2,e4=e1
DGsetup⁡LD
Lie algebra: Alg1
ExteriorDerivative⁡θ1
−θ1⁢⋀⁢θ3−θ2⁢⋀⁢θ4
Example 6.
The ExteriorDerivative command can also be used with abstract differential forms.
DGsetup⁡f=dgform⁡0,α=dgform⁡1,β=dgform⁡2,d⁡α=f⁢β,M11
frame name: M11
ExteriorDerivative⁡α
β⁢f
ExteriorDerivative⁡α&wβ&wβ
−2⁢α⁢⋀⁢β⁢⋀⁢d⁢β+β⁢f⁢⋀⁢β⁢⋀⁢β
See Also
LieBracket
DeRhamHomotopy
PDEtools[declare]
Physics[ExteriorDerivative]
Physics
Download Help Document