GroupActions[InfinitesimalSymmetriesOfGeometricObjectFields] - find the infinitesimal symmetries (vector fields) for a collection of vector fields, differential forms tensors, or connections
Calling Sequences
InfinitesimalSymmetriesOfGeometricObjectFields(T, option)
Parameters
T - a list of vector fields, differential forms, tensors, connections, list of vector fields, list of differential forms, list of tensors
option - output = "list", output = "pde", auxiliaryequations = [Delta1, Delta2,..] coefficientvariables = [x1, x2, ...], ansatz = X, unknowns = [F1, F2, ...], parameters = {a1, a2}
Description
Examples
Let M be a manifold and let T1, T2, ...TN be a list of tensor fields on M. Then the Lie algebra Γof infinitesimal symmetries of the list of tensors Ti is the Lie algebra of vector fields X on M such that the Lie derivatives ℒX Ti = 0 for i = 1, 2, ... , N.
If the tensors Ti all have the same tensorial type, say Ti ∈TsrM, then let 𝒯 = spanT1, T2, ...TN. Then the Lie algebra Γ of infinitesimal symmetries of the tensor space 𝒯 is Lie algebra of vector fields X on M such that ℒX Ti ∈𝒯 for i = 1, 2, ... , N.
The command InfinitesimalSymmetriesOfGeometricObjectFields(T) calculates the Lie algebra of infinitesimal symmetries of the tensors and tensor spaces in the list T. For example, ifT1, T2, T3,T4 are 4 tensor fields and T = T1, T2, T3,T4, then InfinitesimalSymmetriesOfGeometricObjectFields(T) will return the Lie algebra of vector fields X such that ℒX T1 = 0 , ℒX T1 = 0 , ℒX T3 ∈ span T3,T4, ℒX T4 ∈ span T3,T4.
The procedure InfinitesimalSymmetriesOfGeometricObjectFields creates an arbitrary vector field X on M and generates a system of first order PDE for the coefficients of X from the Lie derivative equations ℒX Ti = 0 and ℒX Ti ∈𝒯. These PDE are solved using pdsolve .
If the (real) Lie algebra Γ of infinitesimal symmetries for a given collection of geometric object fields is finite dimensional (so that the most general infinitesimal symmetry depends only upon arbitrary constants), then the optional argument output = "list" will return a basis for Γ.
With the option output = "pde", just the determining differential equations for the symmetries are returned.
The variables appearing in the coefficients of the vector field X can be specified with the option coefficientvariables = [x1, x2, ...].
The exact form of the infinitesimal symmetries to be found can be specified with the option ansatz = X. With this option, the unknown coefficients to be solved for must be explicitly identified with the option unknowns = [F1, F2, ...].
Additional constraints on the symmetry vector field X can be specified with the optional argument auxiliaryequations = [Delta1, Delta2,..], where Delta1, Delta2,.. are differential equations whose unknowns are the coefficients of the vector field X.
If the given geometric object fields T depend upon parameters {a1, a2, ...}, then the optional argument parameters = {a1, a2, ...} will invoke the case splitting capabilities of pdsolve. Exceptional parameter values will be determined and a sequence of lists of infinitesimal symmetries, one list for each set of parameter values, will be returned.
Other optional arguments for pdsolve may be passed through the command InvariantGeometricObjectFields.
If pdsolve is unable to explicitly solve the pde system for the infinitesimal symmetries, then NULL is returned.
The command InfinitesimalSymmetriesOfGeometricObjectFields is part of the DifferentialGeometry:-GroupActions package. It can be used in the form InfinitesimalSymmetriesOfGeometricObjectFields(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-InfinitesimalSymmetriesOfGeometricObjectFields(...).
with⁡DifferentialGeometry:with⁡Tensor:with⁡GroupActions:
We define a manifold M with coordinates x, y, z.
DGsetup⁡x,y,z,M
frame name: M
Example 1.
Find all vector fields which commute with the vector field Y = Dx.
Y≔D_x
Y:=D_x
InfinitesimalSymmetriesOfGeometricObjectFields⁡Y
_F3⁡y,z⁢D_x+_F2⁡y,z⁢D_y+_F1⁡y,z⁢D_z
Find all vector fields whose coefficients depend only on x which commute with the vector field Y = Dx.
InfinitesimalSymmetriesOfGeometricObjectFields⁡Y,coefficientvariables=x
D_x⁢_C3+D_y⁢_C2+D_z⁢_C1
Example 2.
Find the infinitesimal symmetries for the metric g = dx2 +dy2 +dz2.
g≔evalDG⁡dx&tdx+dy&tdy+dz&tdz
g:=dx⁢dx+dy⁢dy+dz⁢dz
InfinitesimalSymmetriesOfGeometricObjectFields⁡g,output=list
−D_y⁢z+D_z⁢y,D_z,−D_x⁢z+D_z⁢x,−D_x⁢y+D_y⁢x,D_y,D_x
Show the defining differential equations for these symmetries. Here we explicitly define the general form of the symmetry vector and specify the unknowns.
X≔evalDG⁡R⁡x,y,z⁢D_x+S⁡x,y,z⁢D_y+T⁡x,y,z⁢D_z
X:=R⁡x,y,z⁢D_x+S⁡x,y,z⁢D_y+T⁡x,y,z⁢D_z
U≔R⁡x,y,z,S⁡x,y,z,T⁡x,y,z
U:=R⁡x,y,z,S⁡x,y,z,T⁡x,y,z
InfinitesimalSymmetriesOfGeometricObjectFields⁡g,output=pde,unknowns=U,ansatz=X
2⁢∂∂x⁢R⁡x,y,z,∂∂x⁢S⁡x,y,z+∂∂y⁢R⁡x,y,z,∂∂x⁢T⁡x,y,z+∂∂z⁢R⁡x,y,z,∂∂x⁢S⁡x,y,z+∂∂y⁢R⁡x,y,z,2⁢∂∂y⁢S⁡x,y,z,∂∂y⁢T⁡x,y,z+∂∂z⁢S⁡x,y,z,∂∂x⁢T⁡x,y,z+∂∂z⁢R⁡x,y,z,∂∂y⁢T⁡x,y,z+∂∂z⁢S⁡x,y,z,2⁢∂∂z⁢T⁡x,y,z,0,R⁡x,y,z,S⁡x,y,z,T⁡x,y,z
We can use the auxilaryequations option to find the symmetries X of the metric g for which R + S+T = 0.
Δ≔R⁡x,y,z+S⁡x,y,z+T⁡x,y,z=0
Δ:=R⁡x,y,z+S⁡x,y,z+T⁡x,y,z=0
InfinitesimalSymmetriesOfGeometricObjectFields⁡g,output=list,auxiliaryequations=Δ,unknowns=U,ansatz=X
−D_x+D_z,−y−z⁢D_x+x−z⁢D_y−x−y⁢D_z,−D_x+D_y
Example 3.
Find the joint infinitesimal symmetries for the 0 connection C and the volume form dx ∧dy ∧ dz.
C≔Connection⁡0&multD_x&tensordx&tensordx
C:=0⁢D_x⁢dx⁢dx
μ≔evalDG⁡dx&wdy&wdz
μ:=dx⁢⋀⁢dy⁢⋀⁢dz
InfinitesimalSymmetriesOfGeometricObjectFields⁡μ,C
−_C2⁢x+_C8⁢x−_C9⁢z−y⁢_C11−_C10⁢D_x+_C5⁢x+_C6⁢z+_C8⁢y+_C7⁢D_y+_C1⁢x+_C2⁢z+_C4⁢y+_C3⁢D_z
Example 4.
Here is a famous calculation due to E. Cartan. See Fulton and Harris Representation Theory page 357. We find the linear infinitesimal symmetries of the 3-form ω defined on the 7-manifold N with coordinates v1, v3, v4, w1,w3,w4, u.
DGsetup⁡v1,v3,v4,w1,w3,w4,u,N
frame name: N
ω≔evalDG⁡dw3&wdu&wdv3+dv4&wdu&wdw4+dw1&wdu&wdv1+2⁢dv1&wdv3&wdw4+2⁢dw1&wdw3&wdv4
ω:=2⁢dv1⁢⋀⁢dv3⁢⋀⁢dw4+dv1⁢⋀⁢dw1⁢⋀⁢du+dv3⁢⋀⁢dw3⁢⋀⁢du+2⁢dv4⁢⋀⁢dw1⁢⋀⁢dw3−dv4⁢⋀⁢dw4⁢⋀⁢du
A≔Matrix⁡7,7,i,j↦a‖i‖j
X≔convert⁡A,DGvector
X:=a11⁢v1+a12⁢v3+a13⁢v4+a14⁢w1+a15⁢w3+a16⁢w4+a17⁢u⁢D_v1+a21⁢v1+a22⁢v3+a23⁢v4+a24⁢w1+a25⁢w3+a26⁢w4+a27⁢u⁢D_v3+a31⁢v1+a32⁢v3+a33⁢v4+a34⁢w1+a35⁢w3+a36⁢w4+a37⁢u⁢D_v4+a41⁢v1+a42⁢v3+a43⁢v4+a44⁢w1+a45⁢w3+a46⁢w4+a47⁢u⁢D_w1+a51⁢v1+a52⁢v3+a53⁢v4+a54⁢w1+a55⁢w3+a56⁢w4+a57⁢u⁢D_w3+a61⁢v1+a62⁢v3+a63⁢v4+a64⁢w1+a65⁢w3+a66⁢w4+a67⁢u⁢D_w4+a71⁢v1+a72⁢v3+a73⁢v4+a74⁢w1+a75⁢w3+a76⁢w4+a77⁢u⁢D_u
vars≔convert⁡A,set
vars:=a11,a12,a13,a14,a15,a16,a17,a21,a22,a23,a24,a25,a26,a27,a31,a32,a33,a34,a35,a36,a37,a41,a42,a43,a44,a45,a46,a47,a51,a52,a53,a54,a55,a56,a57,a61,a62,a63,a64,a65,a66,a67,a71,a72,a73,a74,a75,a76,a77
Y≔InfinitesimalSymmetriesOfGeometricObjectFields⁡ω,ansatz=X,unknowns=vars
Y:=_C1⁢v1+_C2⁢v3+_C3⁢v4+_C4⁢w3+_C5⁢w4+_C6⁢u⁢D_v1−_C4⁢w1−_C7⁢v1−_C8⁢v3−_C9⁢v4−u⁢_C11−w4⁢_C10⁢D_v3+_C1⁢v4+_C4⁢u−_C5⁢w1+_C6⁢v3+_C8⁢v4−v1⁢_C11−w3⁢_C10⁢D_v4−_C1⁢w1+_C7⁢w3−_C9⁢u−v3⁢_C12−v4⁢_C13−w4⁢_C11⁢D_w1−_C2⁢w1+_C3⁢u+_C6⁢w4+_C8⁢w3+v1⁢_C12−v4⁢_C14⁢D_w3−_C1⁢w4+_C3⁢w1+_C8⁢w4+_C9⁢w3+u⁢_C12+v1⁢_C13+v3⁢_C14⁢D_w4−2⁢_C3⁢v3−2⁢_C4⁢w4−2⁢_C6⁢w1−2⁢_C9⁢v1+2⁢v4⁢_C12−2⁢w3⁢_C11⁢D_u
c≔Tools:-DGinfo⁡Y,NonJetIndets
c:=_C1,_C2,_C3,_C4,_C5,_C6,_C7,_C8,_C9,_C10,_C11,_C12,_C13,_C14
Gamma≔seq⁡Tools:-DGmap⁡1,diff,Y,v,v=c
Γ:=v1⁢D_v1+v4⁢D_v4−w1⁢D_w1−w4⁢D_w4,v3⁢D_v1−w1⁢D_w3,−2⁢D_u⁢v3−u⁢D_w3+v4⁢D_v1−w1⁢D_w4,2⁢D_u⁢w4+u⁢D_v4−w1⁢D_v3+w3⁢D_v1,−w1⁢D_v4+w4⁢D_v1,2⁢D_u⁢w1+u⁢D_v1+v3⁢D_v4−w4⁢D_w3,v1⁢D_v3−w3⁢D_w1,v3⁢D_v3+v4⁢D_v4−w3⁢D_w3−w4⁢D_w4,2⁢D_u⁢v1+u⁢D_w1+v4⁢D_v3−w3⁢D_w4,−w3⁢D_v4+w4⁢D_v3,2⁢D_u⁢w3+u⁢D_v3−v1⁢D_v4+w4⁢D_w1,−2⁢D_u⁢v4−u⁢D_w4−v1⁢D_w3+v3⁢D_w1,−v1⁢D_w4+v4⁢D_w1,−v3⁢D_w4+v4⁢D_w3
nops⁡Gamma
14
It is a simple matter to use the package LieAlgebras to check that this Lie algebra is indecomposable and simple and is a realization of the exceptional Lie algebra g2.
Example 5.
Find the point symmetries of the Lagrangian for the (2 +1) wave equation. The result is a 8-dimensional Lie algebra.
DGsetup⁡x,y,t,u,J,1
frame name: J
λ≔evalDG⁡u12+u22−u32⁢Dx&wDy&wDt
λ:=u12+u22−u32⁢Dx⁢⋀⁢Dy⁢⋀⁢Dt
Gamma≔InfinitesimalSymmetriesOfGeometricObjectFields⁡λ,output=list
Γ:=−2⁢D_t⁢t−2⁢D_x⁢x−2⁢D_y⁢y+D_u[]⁢u[],D_u[],D_t⁢y+D_y⁢t,D_t,D_t⁢x+D_x⁢t,−D_x⁢y+D_y⁢x,D_y,D_x
8
Example 6.
Find the infinitesimal conformal symmetries of the metric g = dx2 +dy2 +dz2. These are the vector fields X such that ℒXg = λg or ℒXg ∈spang.
Note that the first argument is now a list of a list.
ConSym≔InfinitesimalSymmetriesOfGeometricObjectFields⁡g,output=list
ConSym:=−14⁢y2−14⁢z2+14⁢x2⁢D_x+12⁢x⁢y⁢D_y+12⁢x⁢z⁢D_z,12⁢x⁢z⁢D_x+12⁢y⁢z⁢D_y−−14⁢z2+14⁢x2+14⁢y2⁢D_z,12⁢x⁢D_x+12⁢y⁢D_y+12⁢z⁢D_z,12⁢x⁢y⁢D_x−14⁢z2−14⁢y2+14⁢x2⁢D_y+12⁢y⁢z⁢D_z,−D_y⁢z+D_z⁢y,D_z,−D_x⁢z+D_z⁢x,−D_x⁢y+D_y⁢x,D_y,D_x
The conformal symmetries of 𝔤 define a 10-dimensional Lie algebra.
nops⁡ConSym
10
Example 7.
Find the infinitesimal symmetries of a distribution of vector fields Δ. These are the vector fields X such that ℒX(Y) ∈ Δ for each Y ∈Δ.
DGsetup⁡x1,x2,x3,x4,x5,Q
frame name: Q
Δ≔evalDG⁡D_x1+x3⁢D_x2+x4⁢D_x3+x43⁢D_x5,D_x4:
InfinitesimalSymmetriesOfGeometricObjectFields⁡Δ,output=list
−x2⁢D_x2−x3⁢D_x3−x4⁢D_x4−3⁢x5⁢D_x5,−12⁢x42⁢D_x1−−16⁢x5+12⁢x3⁢x42⁢D_x2−13⁢x43⁢D_x3−15⁢x45⁢D_x5,−x1⁢D_x1−2⁢x2⁢D_x2−x3⁢D_x3−x5⁢D_x5,D_x5,x1⁢D_x2+D_x3,D_x2,D_x1
Example 8.
Find the symmetries of a metric which depend upon 2 parameters α, β, where α≠ 0.
g≔evalDG⁡dx&tdx+exp⁡α⁢x⁢dy&tdy+β⁢y+1⁢dz&tdz
g:=dx⁢dx+ⅇα⁢x⁢dy⁢dy+y⁢β+1⁢dz⁢dz
InfinitesimalSymmetriesOfGeometricObjectFields⁡g,output=list,parameters=α,β,auxiliaryequations=α≠0
D_z,−2⁢D_xα+y⁢D_y,D_y,y⁢α⁢D_x−14⁢y2⁢α2−ⅇ−α⁢x⁢D_y,4⁢D_xα−2⁢y⁢β+1⁢D_yβ+z⁢D_z,D_z,α=α,β=0,α=α,β=β
Example 9.
The command InfinitesimalSymmetriesOfGeometricObjectFields can also be used to calculate the symmetries of a tensor T defined on a Lie algebra.
LD≔Library:-Retrieve⁡Winternitz,1,4,10,alg1
LD:=e2,e3=e1,e2,e4=−e3,e3,e4=e2
DGsetup⁡LD
Lie algebra: alg1
T≔evalDG⁡e4&tθ1&te4
T:=e4⁢θ1⁢e4
InfinitesimalSymmetriesOfGeometricObjectFields⁡T
_C1⁢e1+_C2⁢e4
See Also
DifferentialGeometry
GroupActions
JetCalculus
Tensor
LieAlgebras
Connection
LieDerivative
DGinfo
PDEtools[Infinitesimals]
Physics[LieDerivative]
Physics
Download Help Document