GroupActions[IsotropyFiltration] - find the infinitesimal isotropy filtration for a Lie algebra of vector fields
Calling Sequences
IsotropyFiltration(Gamma, pt, option)
Parameters
Gamma - a list of vector fields on a manifold M
pt - a list of equations x1 = p1, x2 = p2, ... specifying the coordinates of point p ∈ M
option - the optional argument output = O, where O is a list containing the keywords "Vector" and/or the name of an initialized abstract algebra for the Lie algebra of vector fields Gamma.
Description
Examples
Let Γ be a Lie algebra of vector fields on a manifold M and letp ∈M. The isotropy filtration of the Lie algebra of vector fields Γ is the decreasing nested sequence of subalgebras ⋅⋅ ⊂ Γpk⊂⋅⋅⋅Γp1⊂ Γp0 ⊂ Γ defined by
Γpk = { X ∈Γ | the coefficients of X and their derivatives all vanish to order k at p }.
Note that if X ∈ Γpk and Y ∈ Γpℓ , then X, Y ∈ Γpk+ℓ. The subalgebra Γp0 is called the isotropy subalgebra of Γ at p.
The command IsotropyFiltration(Gamma, pt) returns a list of list of vector fields, the first list gives a basis for Γp0, the second list gives a basis for Γp1 and so on.
The command IsotropyFiltration is part of the DifferentialGeometry:-GroupActions package. It can be used in the form IsotropyFiltration(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-IsotropyFiltration(...).
with⁡DifferentialGeometry:with⁡GroupActions:with⁡Library:with⁡LieAlgebras:
Example 1.
First we obtain a Lie algebra of vector fields from the paper by Gonzalez-Lopez, Kamran, Olver in the DifferentialGeometry Library using the Retrieve command and then we compute the isotropy filtration.
DGsetup⁡x,y,M
frame name: M
Gamma≔Retrieve⁡Gonzalez-Lopez,1,27,4,manifold=M
Γ:=D_x,2⁢x⁢D_x+4⁢y⁢D_y,x2⁢D_x+4⁢x⁢y⁢D_y,D_y,x⁢D_y,x2⁢D_y,x3⁢D_y,x4⁢D_y
We calculate the isotropy filtration as a subalgebra of Γ.
F1≔IsotropyFiltration⁡Gamma,x=0,y=0
F1 ≔ 2⁢x⁢D_x+4⁢y⁢D_y,x2⁢D_x+4⁢x⁢y⁢D_y,x⁢D_y,x2⁢D_y,x3⁢D_y,x4⁢D_y,x2⁢D_x+4⁢x⁢y⁢D_y,x2⁢D_y,x3⁢D_y,x4⁢D_y,x3⁢D_y,x4⁢D_y,x4⁢D_y,
Example 2.
We continue with Example 1. Here we calculate the isotropy filtration as a subalgebra of the abstract Lie algebra defined by Γ. To this end, we first calculate the structure constants for Γand initialize the result as Alg1.
L≔LieAlgebraData⁡Gamma,Alg1
L:=e1,e2=2⁢e1,e1,e3=e2,e1,e5=e4,e1,e6=2⁢e5,e1,e7=3⁢e6,e1,e8=4⁢e7,e2,e3=2⁢e3,e2,e4=−4⁢e4,e2,e5=−2⁢e5,e2,e7=2⁢e7,e2,e8=4⁢e8,e3,e4=−4⁢e5,e3,e5=−3⁢e6,e3,e6=−2⁢e7,e3,e7=−e8
DGsetup⁡L:
Now re-run the IsotropyFiltration command with the third argument output = [Alg1].
F≔IsotropyFiltration⁡Gamma,x=0,y=0,output=Alg1
F:=e2,e3,e5,e6,e7,e8,e3,e6,e7,e8,e7,e8,e8,
We check that F does indeed define a filtration of the Lie algebra Γ (note that there is an index shift Γpk = F[k+1]).
BracketOfSubspaces⁡F1,F1
2⁢e3,−2⁢e5,2⁢e7,4⁢e8,−3⁢e6
BracketOfSubspaces⁡F1,F2
2⁢e3,2⁢e7,4⁢e8,3⁢e6
BracketOfSubspaces⁡F1,F3
2⁢e7,4⁢e8
BracketOfSubspaces⁡F1,F4
4⁢e8
BracketOfSubspaces⁡F2,F3
−e8
BracketOfSubspaces⁡F2,F4
All these brackets can be checked at once with Query/"filtration".
Query⁡F,Filtration
true
See Also
DifferentialGeometry
GroupActions
Library
LieAlgebras
BracketOfSubspaces
IsotropySubalgebra,
LieAlgebraData
Query
Download Help Document