DifferentialGeometry
IntersectSubspaces
find the intersection of a list of vector subspaces of vectors, forms or tensors
Calling Sequence
Parameters
Description
Examples
IntersectSubspaces(S)
S
-
a list [A1, A2, ...], where each Ai is a list of vectors, forms or tensors
IntersectSubspaces(S) computes the intersection of the subspaces spanned by the elements of the list.
This command is part of the DifferentialGeometry package, and so can be used in the form IntersectSubspaces(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-IntersectSubspaces.
with⁡DifferentialGeometry:
Initialize a 4-dimensional manifold M with coordinates [x, y, z, w].
DGsetup⁡x,y,z,w,M:
Example 1.
Find the intersection of the three 3 dimensional subspaces spanned by A1, A2, A3.
A1≔D_x,D_y,D_z
A2≔D_x,D_y,D_w
A3≔evalDG⁡D_y+D_z,D_z+D_w,D_w
A3≔D_y+D_z,D_z+D_w,D_w
IntersectSubspaces⁡A1,A2,A3
D_y
Example 2.
Find the intersection of the subspaces of 2-forms spanned by B1 and B2. Check the result using the GetComponents command.
B1≔evalDG⁡dx&wdy+dy&wdz,dx&wdw−dy&wdz,dx&wdw+dy&wdw,dx&wdy+dx&wdz−dz&wdw
B1≔dx⁢⋀⁢dy+dy⁢⋀⁢dz,dx⁢⋀⁢dw−dy⁢⋀⁢dz,dx⁢⋀⁢dw+dy⁢⋀⁢dw,dx⁢⋀⁢dy+dx⁢⋀⁢dz−dz⁢⋀⁢dw
B2≔evalDG⁡dx&wdy−dy&wdz,dy&wdz+dz&wdw,dx&wdz+dz&wdw
B2≔dx⁢⋀⁢dy−dy⁢⋀⁢dz,dy⁢⋀⁢dz+dz⁢⋀⁢dw,dx⁢⋀⁢dz+dz⁢⋀⁢dw
C≔IntersectSubspaces⁡B1,B2
C≔−dx2⁢⋀⁢dy+dx⁢⋀⁢dz−3⁢dy2⁢⋀⁢dz−dz⁢⋀⁢dw
The command GetComponents returns the components of the 2-form in C with respect to the 2-forms in B1 and B2. This proves that the 2-form in C does indeed belong to the intersection of the spans of B1 and B2.
GetComponents⁡C,B1
−32,0,0,1
GetComponents⁡C,B2
−12,−2,1
See Also
DGbasis
GetComponents
Download Help Document