JetCalculus[AssignVectorType] - assign a type (one of contact, evolutionary, generalized, generic, point, projectable, total) to a vector field
Calling Sequences
AssignVectorType(X)
Parameters
X - a vector field on a jet space
Description
Examples
Let π:E→M be a fiber bundle and let πk:JkE→ M be the associated bundle of k−jets.
[i] A vector field X on E is called a point vector field.
[ii] If X is a point vector field which projects under πto a vector field on M, then X is called a projectable vector field.
[iii] If the fiber dimension of E is 1 and X is a vector field on J1E which preserves the contact 1-form on J1E (under Lie differentiation), then X is a contact vector field.
[iv] If X is a vector field on JkE which takes values in the tangent space of E, then X is called a generalized vector field on X (also called a Lie-Backlund vector field or a dynamical vector field).
[v] If X is a generalized vector field on JkE which projects under π to the zero vector field on M, then X is called a vertical generalized vector field or an evolutionary vector on E.
[vi] A generalized vector field which annihilates the contact ideal on JkE is called a total vector field.
[vii] A vector field not of the types [i]--[vi] or a prolongation of such is labeled generic.
The command AssignVectorType(X) returns the vector field X, but with internal representation of X changed to encode its vector type. The type of a vector and its prolongation order can be determined by the command DGinfo with the keyword "VectorType".
Any of the vector fields [i]--[vi] admit a unique lift to a vector field with values in JpEby the Lie prolongation formula. We call, for example, a vector field on JpE obtained from the prolongation of a point vector field a prolonged point vector field. See Prolong for further information.
Explicit coordinate formulas for each of these types of vector fields in the case E =ℝ2×ℝ →ℝ2 are presented in Example 1.
The type of a vector field and its prolongation order can be determined by the command DGinfo with keyword "VectorType".
The command AssignVectorType is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form AssignVectorType(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-AssignVectorType(...).
with⁡DifferentialGeometry:with⁡JetCalculus:
Example 1.
First initialize the jet space for two independent variables and one dependent variable and prolong it to order 4.
DGsetup⁡x,y,u,J22,4:
Case 1. Point vector fields:
X1≔evalDG⁡A⁡x,y,u⁢D_x+B⁡x,y,u⁢D_y+C⁡x,y,u⁢D_u
X1:=A⁡x,y,u⁢D_x+B⁡x,y,u⁢D_y+C⁡x,y,u⁢D_u
When a vector field is first defined, it is not given a type.
Tools:-DGinfo⁡X1,VectorType
Now assign the vector field a type.
newX1≔AssignVectorType⁡X1
newX1:=A⁡x,y,u⁢D_x+B⁡x,y,u⁢D_y+C⁡x,y,u⁢D_u
Tools:-DGinfo⁡newX1,VectorType
point,0
This indicates that the vector field is a point vector field, the 0 indicates that the vector field has not been prolonged to a jet space.
Case 2. Projectable vector fields:
X2≔evalDG⁡A⁡x,y⁢D_x+B⁡x,y⁢D_y+C⁡x,y,u⁢D_u
X2:=A⁡x,y⁢D_x+B⁡x,y⁢D_y+C⁡x,y,u⁢D_u
newX2≔AssignVectorType⁡X2
newX2:=A⁡x,y⁢D_x+B⁡x,y⁢D_y+C⁡x,y,u⁢D_u
Tools:-DGinfo⁡newX2,VectorType
projectable,0
Case 3. Contact vector fields:
The command GeneratingFunctionToContactVector always returns a contact vector field.
PDEtoolsdeclare⁡S⁡x,y,u,u1,u2,quiet
X3≔GeneratingFunctionToContactVector⁡S⁡x,y,u,u1,u2
X3:=−Su1⁢D_x−Su2⁢D_y+−u1⁢Su1−u2⁢Su2+S⁢D_u+u1⁢Su+Sx⁢D_u1+u2⁢Su+Sy⁢D_u2
Tools:-DGinfo⁡X3,VectorType
newX3≔AssignVectorType⁡X3:
Tools:-DGinfo⁡newX3,VectorType
contact,1
Case 4. Generalized vector fields:
vars≔x,y,u,u1,u2:
X4≔evalDG⁡A⁡vars⁢D_x+B⁡vars⁢D_y+C⁡vars⁢D_u
X4:=A⁡x,y,u,u1,u2⁢D_x+B⁡x,y,u,u1,u2⁢D_y+C⁡x,y,u,u1,u2⁢D_u
newX4≔AssignVectorType⁡X4:
Tools:-DGinfo⁡newX4,VectorType
generalized,0
Generalized vector fields may depend upon higher order jet variables. For example:
vars≔x,y,u,u1,u2,u1,1,u1,1,1,u1,1,1,1:
X4≔evalDG⁡A⁡vars⁢D_x
X4:=A⁡x,y,u,u1,u2,u1,1,u1,1,1,u1,1,1,1⁢D_x
Case 5. Evolutionary vector fields:
vars≔x,y,u,u1,u2,u1,1,u1,2,u2,2:
X5≔evalDG⁡C⁡vars⁢D_u
X5:=C⁡x,y,u,u1,u2,u1,1,u1,2,u2,2⁢D_u
newX5≔AssignVectorType⁡X5:
Tools:-DGinfo⁡newX5,VectorType
evolutionary,0
Case 6. Total vector fields:
X6≔evalDG⁡A⁢D_x+B⁢D_y+A⁢u1+B⁢u2⁢D_u
X6:=A⁢D_x+B⁢D_y+A⁢u1+B⁢u2⁢D_u
newX6≔AssignVectorType⁡X6:
Tools:-DGinfo⁡newX6,VectorType
total,0
Case 7. Generic vector fields:
A generic vector field cannot be prolonged--the order of prolongation is therefore declared to be "NA" (Not Applicable).
X7≔evalDG⁡D_u1
X7≔D_u1
newX7≔AssignVectorType⁡X7:
Tools:-DGinfo⁡newX7,VectorType
generic,NA
Example 2.
Here we give examples of prolonged vector fields of the various types. First initialize the jet space for one independent variable and one dependent variable and prolong it to order 4.
DGsetup⁡x,u,E,7:
Case 1. A prolonged point vector field.
X1≔evalDG⁡u⁢D_x−x⁢D_u+−1−u12⁢D_u1−3⁢u1⁢u1,1⁢D_u1,1
X1≔u⁢D_x−x⁢D_u−u12+1⁢D_u1−3⁢u1⁢u1,1⁢D_u1,1
newX1≔u⁢D_x−x⁢D_u−u12+1⁢D_u1−3⁢u1⁢u1,1⁢D_u1,1
point,2
This indicates that the vector field is a prolonged point vector field, the 2 indicates that the vector field has been prolonged from the space E (of independent and dependent variables) to the 2nd jet space.
Case 2. A prolonged projectable vector field: ???XXX I get "generic"
X2≔evalDG⁡x⁢D_x+u0⁢D_u−u2⁢D_u1−2⁢u1,1,1⁢D_u1,1,1−3⁢u1,1,1,1⁢D_u1,1,1,1
X2≔x⁢D_x+u0⁢D_u−u2⁢D_u1−2⁢u1,1,1⁢D_u1,1,1−3⁢u1,1,1,1⁢D_u1,1,1,1
newX2≔x⁢D_x+u0⁢D_u−u2⁢D_u1−2⁢u1,1,1⁢D_u1,1,1−3⁢u1,1,1,1⁢D_u1,1,1,1
Case 3. A prolonged contact vector field: ???XXX
X3≔evalDG⁡−2⁢u1⁢D_x+−u12+x2⁢D_u+2⁢x⁢D_u1+2+2⁢u1,12⁢D_u1,1+6⁢u2⁢u1,1,1⁢D_u1,1,1
X3≔−2⁢u1⁢D_x+x2−u12⁢D_u+2⁢x⁢D_u1+2⁢u1,12+2⁢D_u1,1+6⁢u2⁢u1,1,1⁢D_u1,1,1
newX3≔AssignVectorType⁡X3
newX3≔−2⁢u1⁢D_x+x2−u12⁢D_u+2⁢x⁢D_u1+2⁢u1,12+2⁢D_u1,1+6⁢u2⁢u1,1,1⁢D_u1,1,1
Case 4. A prolonged generalized vector field:
X4≔evalDG⁡u1,1⁢D_x−u1,1,1⁢D_u+−u1,1,1,1−u1⁢u1,1,1⁢D_u1
X4≔u1,1⁢D_x−u1,1,1⁢D_u−u1⁢u1,1,1+u1,1,1,1⁢D_u1
generalized,1
Case 5. A prolonged evolutionary vector field:
X5≔evalDG⁡u1,1⁢D_u+u1,1,1⁢D_u1+u1,1,1,1⁢D_u1,1+u1,1,1,1,1⁢D_u1,1,1+u1,1,1,1,1,1⁢D_u1,1,1,1+u1,1,1,1,1,1,1⁢D_u1,1,1,1,1,1
X5:=u1,1⁢D_u+u1,1,1⁢D_u1+u1,1,1,1⁢D_u1,1+u1,1,1,1,1⁢D_u1,1,1+u1,1,1,1,1,1⁢D_u1,1,1,1+u1,1,1,1,1,1,1⁢D_u1,1,1,1,1,1
Case 6. A prolonged total vector field:
X6≔Prolong⁡D_x+u1⁢D_u,3
X6:=D_x+u1⁢D_u+u1,1⁢D_u1+u1,1,1⁢D_u1,1+u1,1,1,1⁢D_u1,1,1
newX6≔AssignVectorType⁡X5:
See Also
DifferentialGeometry
JetCalculus
AssignTransformationType
DGinfo
GeneratingFunctionToContactVector
Prolong
Download Help Document