JetCalculus[GeneratingFunctionToContactVector] - find the contact vector field defined by a generating function
Calling Sequences
GeneratingFunctionToContactVector(S)
Parameters
S - a Maple expression
Description
Examples
Let π:E → M be a fiber bundle with 1-dimensional fiber and let π1: J1E → M be 1st order jet space of E. In terms of the usual coordinates xi, u, ui on J1E, the contact form on J1E is C = du − uidxi. A vector field X on J1E which preserves the contact form C, in the sense that ℒXC= λ C, is called an infinitesimal contact transformation or a contact vector field. There is a formula which assigns to each locally defined real-valued function S on J1E a contact vector field XS. The function S is called the generating function for the contact vector field XS. In terms of the local coordinates xi, u, ui , we have S = Sxi, u, ui and
XS = −∂S ∂ui ∂ ∂xi + S − ui∂S ∂ui∂ ∂u + ∂S∂xi + ui ∂S∂u∂ ∂ui .
For further details see P. J. Olver, Equivalence, Invariants and Symmetry, page 131.
The command GeneratingFunctionToContactVector(S) returns the contact vector field defined by the function S.
The command GeneratingFunctionToContactVector is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form GeneratingFunctionToContactVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-GeneratingFunctionToContactVector(...).
with⁡DifferentialGeometry:with⁡JetCalculus:
Example 1.
The formula for the contact vector field in terms of the generating function with 1 independent variable.
DGsetup⁡x,u,J11,1:
PDEtoolsdeclare⁡S⁡x,u,u1,quiet
GeneratingFunctionToContactVector⁡S⁡x,u,u1
−Su1⁢D_x+−u1⁢Su1+S⁢D_u+Sx+u1⁢Su⁢D_u1
The formula for the contact vector field in terms of the generating function with 2 independent variables.
DGsetup⁡x,y,u,J21,1:
PDEtoolsdeclare⁡S⁡x,y,u,u1,u2,quiet
GeneratingFunctionToContactVector⁡S⁡x,y,u,u1,u2
−Su1⁢D_x−Su2⁢D_y+−u2⁢Su2−u1⁢Su1+S⁢D_u+Sx+u1⁢Su⁢D_u1+Sy+u2⁢Su⁢D_u2
The formula for the contact vector field in terms of the generating function with 3 independent variables.
DGsetup⁡x,y,z,u,J31,1:
PDEtoolsdeclare⁡S⁡x,y,z,u,u1,u2,u3,quiet
GeneratingFunctionToContactVector⁡S⁡x,y,z,u,u1,u2,u3
−Su1⁢D_x−Su2⁢D_y−Su3⁢D_z+−u3⁢Su3−u2⁢Su2−u1⁢Su1+S⁢D_u+Sx+u1⁢Su⁢D_u1+Sy+u2⁢Su⁢D_u2+Sz+u3⁢Su⁢D_u3
Example 2.
We choose some specific generating functions and calculate the resulting contact vector fields.
ChangeFrame⁡J21:
S≔x+3⁢y:
GeneratingFunctionToContactVector⁡S
x+3⁢y⁢D_u+D_u1+3⁢D_u2
S≔u:
u⁢D_u+u1⁢D_u1+u2⁢D_u2
S≔a⁢u1+b⁢u2:
−a⁢D_x−b⁢D_y
Example 3.
Check the properties of the vector field X obtained from S = uuy2.
S≔u⁢u22:
X≔GeneratingFunctionToContactVector⁡S
X≔−2⁢u⁢u2⁢D_y−u⁢u22⁢D_u+u1⁢u22⁢D_u1+u23⁢D_u2
X preserves the contact 1-form.
LieDerivative⁡X,Cu
u22⁢Cu
X is the prolongation of its projection to the space of independent and dependent variables.
Φ≔ProjectionTransformation⁡1,0
Φ≔x=x,y=y,u=u
Y≔Pushforward⁡Φ,X
Y≔−2⁢u⁢u2⁢D_y−u⁢u22⁢D_u
Y1≔Prolong⁡Y,1
Y1≔−2⁢u⁢u2⁢D_y−u⁢u22⁢D_u+u1⁢u22⁢D_u1+u23⁢D_u2
Y1&minusX
0⁢D_x
Example 4.
We use the commands GeneratingFunctionToContactVector and Flow to find a contact transformation.
S≔u12+x2:
X≔−2⁢u1⁢D_x+−u12+x2⁢D_u+2⁢x⁢D_u1
Φ≔Flow⁡X,t
Φ≔x=−u1⁢sin⁡2⁢t+x⁢cos⁡2⁢t,y=y,u=−u12⁢cos⁡2⁢t⁢sin⁡2⁢t4+t2+u1⁢cos⁡2⁢t2⁢x−x2⁢−cos⁡2⁢t⁢sin⁡2⁢t4+t2+u12⁢−cos⁡2⁢t⁢sin⁡2⁢t4+t2+x2⁢cos⁡2⁢t⁢sin⁡2⁢t4+t2−u1⁢x+u,u1=u1⁢cos⁡2⁢t+x⁢sin⁡2⁢t,u2=u2
Check that Φ is a contact transformation.
Pullback⁡Φ,du−u1⁢dx−u2⁢dy
−u1⁢dx−u2⁢dy+du
We note that Φ takes on a simple form for t = π4 and that it linearizes the Monge-Ampere equation uxxuyy − uxy2 = 1.
Φ1≔eval⁡Φ,t=π4
Φ1≔x=−u1,y=y,u=−u1⁢x+u,u1=x,u2=u2
Φ2≔Prolong⁡Φ1,2
Φ2≔x=−u1,y=y,u=−u1⁢x+u,u1=x,u2=u2,u1,1=−1u1,1,u1,2=−u1,2u1,1,u2,2=−u1,22u1,1+u2,2
Δ≔Pullback⁡Φ2,u1,1⁢u2,2−u1,22−1
Δ≔−−u1,22u1,1+u2,2u1,1−u1,22u1,12−1
simplify⁡Δ
−u2,2+u1,1u1,1
See Also
DifferentialGeometry
JetCalculus
Flow
LieDerivative
ProjectionTransformation
Prolong
Pullback
Pushforward
AssignVectorType
Download Help Document