JetCalculus[HigherEulerOperators] - apply the higher Euler operators to a function or a differential bi-form
Calling Sequences
HigherEulerOperators(F)
HigherEulerOperators(ω)
Parameters
F - a function on the jet space of a fiber bundle
ω - a differential bi-form on the jet space a fiber bundle
Description
Examples
Let π:E→M be a fiber bundle, with base dimension n and fiber dimension m and let πk:JkE →M be the k-th jet bundle. Introduce local coordinates (xi, uα, uiα, uijα, ..., uij ⋅⋅⋅ ℓα , ...) where, as usual, if s:M→E is a section and σ=jksx:M→E is the k-jet of s, then
uij ⋅⋅⋅ ℓασ = ∂k sα x∂xi ∂xi⋅⋅⋅∂xℓ and 1≤i≤j⋅⋅⋅≤ℓ≤ dimM.
The higher Euler operators are generalizations of the Euler-Lagrange operators and arise in many formulas in the variational calculus for higher order variational problems. They can be defined as follows. Let F be a function on JkE. Let I = i1i2⋅⋅⋅ir be a multi-index. Then the r-th order higher Euler operator is defined by
EαIF = ∂F∂uIα − r+11Dh∂F ∂uIhα +r+12Dhi ∂F ∂uIhiα− r+33Dhij∂F ∂uIhijα + ⋅⋅⋅ .
If ω is a differential bi-form on JkE, then the Euler operators EαIω are defined by
EαIω = ι αIω − r+1rDh ι αIhω +r+22Dhi ιαIhiω − r+33 Dhij ιαhijω +⋅⋅⋅ ,
where ι αij⋅⋅⋅ℓ denotes interior product with the vector field ∂ ∂uij⋅⋅⋅ℓα .
The first calling sequence HigherEulerOperators(F) returns a list of the higher Euler operators of the function F. Each element of the list is a function on jet spaces. The length of the list equals the fiber dimension of the jet bundle JkE, where k is the order of F.
The second calling sequence HigherEulerOperators(ω) returns a list of the higher Euler operators of ω. Each element of the list is a differential form on jet space. The length of the list equals the fiber dimension of the jet bundle on which ω is defined.
Higher Euler operators are studied in detail in S. J. Aldersley Higher Euler operators and some of their applications, J. Math Phys. 20 (1979) 522-531. We mention two important properties. First, if F and G are two functions on jet space, the product rule for the Euler-Lagrange operator is given in terms of the higher Euler operators by
EαFG = ∑|I| ≥0 EαIFDIG+ DIFEαIG.
Second, a function F on jet space may be expressed as an r-fold total derivative if and only if EαIF = 0 for all multi-indices with length I ≤r+1.
The command HigherEulerOperators is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form HigherEulerOperators(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-HigherEulerOperators(...).
with(DifferentialGeometry): with(JetCalculus):
Example 1.
Create the jet space J2ℝ2, ℝwith independent variables x,y and dependent variable u.
DGsetup([x, y], [u], E1, 2):
F := u[1]*u[2,2]^2;
F≔u1⁢u2,22
Apply the higher Euler operators to F.
EulerF := expand(HigherEulerOperators(F));
EulerF≔0,0,4⁢u2,2,2⁢u1,2+2⁢u1⁢u2,2,2,2,u2,22,−4⁢u2,2⁢u1,2−4⁢u1⁢u2,2,2,0,0,2⁢u1⁢u2,2
To interpret this result we first list the current jet coordinates.
Vars := Tools:-DGinfo(E1, "FrameJetVariables");
Vars≔x,y,u,u1,u2,u1,1,u1,2,u2,2
Then the various components of the higher Euler operators for F will be labeled by these jet coordinates as:
Eu[0, 0] := EulerF[3]; Eu[1, 0] := EulerF[4]; Eu[0, 1] := EulerF[5]; Eu[2, 0] := EulerF[6]; Eu[1, 1] := EulerF[7]; Eu[0, 2] := EulerF[8];
Eu0,0≔4⁢u2,2,2⁢u1,2+2⁢u1⁢u2,2,2,2
Eu1,0≔u2,22
Eu0,1≔−4⁢u2,2⁢u1,2−4⁢u1⁢u2,2,2
Eu2,0≔0
Eu1,1≔0
Eu0,2≔2⁢u1⁢u2,2
Example 2.
Create the jet space J2ℝ2, ℝ2with independent variables x,y and dependent variables u, v.
DGsetup([x, y], [u, v], E2, 1):
G := u[1]*v[2]^2;
G≔u1⁢v22
Apply the higher Euler operators to G.
EulerG := expand(HigherEulerOperators(G));
EulerG≔0,0,−2⁢v2⁢v1,2,−2⁢v2⁢u1,2−2⁢u1⁢v2,2,v22,0,0,2⁢u1⁢v2
Vars := Tools:-DGinfo(E2, "FrameJetVariables");
Vars≔x,y,u,v,u1,u2,v1,v2
Then the various components of the higher Euler operators for G will be labeled by these jet coordinates as:
Eu[0, 0] := EulerG[3]; Ev[0, 0] := EulerG[4]; Eu[1, 0] := EulerF[5]; Eu[0, 1] := EulerF[6]; Ev[1, 0] := EulerF[7]; Ev[0, 1] := EulerF[8];
Eu0,0≔−2⁢v2⁢v1,2
Ev0,0≔−2⁢v2⁢u1,2−2⁢u1⁢v2,2
Eu1,0≔−4⁢u2,2⁢u1,2−4⁢u1⁢u2,2,2
Eu0,1≔0
Ev1,0≔0
Ev0,1≔2⁢u1⁢u2,2
Example 3.
Create the jet space J3ℝ, ℝ with independent variable x and dependent variable u.
DGsetup([x], [u], E3, 3):
H := TotalDiff(u[]*u[1]^2, [1,1,1]);
H≔2⁢u1,12+2⁢u1⁢u1,1,1⁢u1+10⁢u1⁢u1,1+2⁢u⁢u1,1,1⁢u1,1+5⁢u12+4⁢u⁢u1,1⁢u1,1,1+2⁢u⁢u1⁢u1,1,1,1
Because H is a 3-fold total derivative, the first 3 Euler operators will vanish.
EulerG := expand(HigherEulerOperators(H));
EulerG≔0,0,0,0,−2⁢u⁢u1,1−u12,2⁢u⁢u1
Example 4.
Calculate the higher Euler operators for ω1.
omega1 := evalDG(Cu[1] &w Cu[2, 2]);
ω1≔Cu1⁢⋀⁢Cu2,2
HigherEulerOperators(omega1);
0⁢Cu,0⁢Cu,−2⁢Cu1,2,2,Cu2,2,2⁢Cu1,2,0⁢Cu,0⁢Cu,−Cu1
Calculate the higher Euler operators for ω2.
omega2 := evalDG(Cu[1] &w Cu[2, 2] &w Dx);
ω2≔Dx⁢⋀⁢Cu1⁢⋀⁢Cu2,2
HigherEulerOperators(omega2);
0⁢Dx⁢⋀⁢Cu,0⁢Dx⁢⋀⁢Cu,2⁢Dx⁢⋀⁢Cu1,2,2,−Dx⁢⋀⁢Cu2,2,−2⁢Dx⁢⋀⁢Cu1,2,0⁢Dx⁢⋀⁢Cu,0⁢Dx⁢⋀⁢Cu,Dx⁢⋀⁢Cu1
See Also
DifferentialGeometry
JetCalculus
DGinfo
Prolong
Pullback
TotalDiff
Transformation
Download Help Document