JetCalculus[ProjectedPullback] - pullback a differential bi-form of type (r, s) by a transformation to a differential bi-form of type (r, s)
Calling Sequences
ProjectedPullback(φ, ω)
Parameters
φ - a transformation between two jet spaces
ω - a differential bi-form of type r,s defined on the range jet space of φ
Description
Examples
Let π:E→M be a fiber bundle, with base dimension n and fiber dimension m and let π∞ :J∞E →M be the ∞-th jet bundle of E. The space of p -forms ΩpJ∞E decomposes into a direct sum ΩpJ∞ = ⨁r+s =p Ωr,sJ∞E, where Ωr,s J∞E is the space of bi-forms of horizontal degree r and vertical degree s. The precise definition of the space Ωr,sJ∞Eis given in the help page for the horizontal exterior derivative. If ω ∈ ΩpJ∞ , then let ωr,s denote the type r,s component of ω in the decomposition (*). The command convert/DGbifom calculates the various bi-graded components of a form ω ∈ ΩpJ∞ .Let F→N be another fiber bundle and let φ: JkE → jℓF. Let η be a differential bi-form of type r,s on JℓF. Then the projected pullback of η is denote by φ†ω and defined by φ†η = Φ*ηr,s.
Two special cases of this general definition should be noted.
[i] If φ is the prolongation of a projectable transformation from E to F, then the pullback φ* is a bi-degree preserving transformation, that is, if η be a differential bi-form of type r,s on JℓF, then φ*η is a differential bi-form of type r,s on JℓF. Hence φ†η = φ*η.
[ii] Suppose that φ: JkE → jℓF is the prolongation of a point transformation, a contact transformation, a differential substitution or a generalized differential substitution. (See AssignTransformationType for the definitions of these different types of transformations.) Then if η is a differential bi-form of type r,s on JℓF ,φ*η= ω0+ω1+ ω2+⋅⋅⋅+ ωr, where ωi is a bi-form of degree r−i, s+i on JkE. In these cases the command ProjectedPullback(φ, ω) returns the type r,s bi-form ω0.
Use ProjectedPullback to transform a Lagrangian bi-form to a new Lagrangian bi-form using any of the above transformations.
The command ProjectedPullback is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form ProjectedPullback(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-ProjectedPullback(...).
with⁡DifferentialGeometry:with⁡JetCalculus:
First initialize several different jet spaces over bundles E1→M1, E2→M2, E3→M3. The dimension of the base spaces are dim(M1) =2, dim(M2) =1, dim(M3) =3.
DGsetup⁡x,y,u,E1,2:DGsetup⁡t,v,E2,2:DGsetup⁡p,q,r,w,E3,2:
Example 1.
Define a transformation φ1:E1→E2. This transformation is a projectable transformation and therefore pullbacks by the prolongation of φ1can be calculated directly using the Pullback command.
Φ1≔Transformation⁡E1,E2,t=x,v=x2⁢u
Φ1:=t=x,v=x2⁢u
prPhi1≔Prolong⁡Φ1,2
prPhi1:=t=x,v=x2⁢u,v1=x2⁢u1+2⁢x⁢u,v1,1=x2⁢u1,1+4⁢x⁢u1+2⁢u
Tools:-DGinfo⁡prPhi1,TransformationType
projectable,2
Pullback the contact 1-form Cv[1] on J2E2 to a contact form on J2E1 -- this can be done with either the Pullback command or the ProjectedPullback command.
Pullback⁡prPhi1,Cv1
2⁢x⁢Cu+x2⁢Cu1
ProjectedPullback⁡prPhi1,Cv1
Example 2
Define a point transformation φ1:E1→E3 and prolong it to a transformation J1E1 → J1E3.
Φ2≔Transformation⁡E1,E3,p=u,q=y,r=1,w=x
Φ2:=p=u,q=y,r=1,w=x
prPhi2≔Prolong⁡Φ2,1
prPhi2:=p=u,q=y,r=1,w=x,w1=1u1,w2=−u2u1,w3=0
Calculate the projected pullback of the type (1, 0) form Dp.
ProjectedPullback⁡prPhi2,Dp
u1⁢Dx+u2⁢Dy
Calculate the projected pullback of the type (1, 1) form Dp ∧Cw1.
ω≔Dp&wedgeCw
ω:=Dp⁢⋀⁢Cw
ProjectedPullback⁡prPhi2,ω
−Dx⁢⋀⁢Cu−u2u1⁢Dy⁢⋀⁢Cu
To illustrate the definition of the projected pullback we re-derive this result using the usual Pullback command. First convert ω from a bi-form to a form θ1.
θ1≔convert⁡ω,DGform
θ1:=−w2⁢dp⁢⋀⁢dq−w3⁢dp⁢⋀⁢dr+dp⁢⋀⁢dw
Then pullback θ1 using pr φ2.
θ2≔Pullback⁡prPhi2,θ1
θ2:=−dx⁢⋀⁢du−u2u1⁢dy⁢⋀⁢du
Then convert θ2 back to a bi-form and take the type [1, 1] part.
θ3≔convert⁡θ2,DGbiform,1,1
θ3:=−Dx⁢⋀⁢Cu−u2u1⁢Dy⁢⋀⁢Cu
Example 3
Define a differential substitution φ3:J2E2→E1 and prolong it to a transformation J2E3 → J2E1.
Φ3≔Transformation⁡E2,E1,x=v,y=v1,u=v2
Φ3:=x=v,y=v1,u=v2
prPhi3≔Prolong⁡Φ3,1
prPhi3:=x=v,y=v1,u=v2,u1=v1⁢v1,2v12+v1,12,u2=v1,1⁢v1,2v12+v1,12
Calculate the projected pullback of the type (1, 0) form 2Dx +3 Dy
ProjectedPullback⁡prPhi3,2⁢Dx+3⁢Dy
3⁢v1,1+2⁢v1⁢Dt
Calculate the projected pullback of the type (1, 0) form Cu
ProjectedPullback⁡prPhi3,u1⁢Cu
−v12⁢v1,22v12+v1,122⁢Cv−v1⁢v1,22⁢v1,1v12+v1,122⁢Cv1
See Also
DifferentialGeometry
JetCalculus
DGinfo
Prolong
Pullback
PushforwardTotalVector
Transformation
Download Help Document