TotalDiff - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


JetCalculus[TotalDiff] - take the total derivative of an expression, a differential form or a contact form

Calling Sequences

     TotalDiff(f, v)

Parameters

     f         - a Maple expression, a differential form or a bi-form

     v         - an independent variable, a positive integer or a list of positive integers

 

Description

Examples

Description

• 

The operation of total differentiation is a fundamental one in the study of jet spaces and their application to differential equations and the calculus of variations.  Informally, total differentiation of a function on a jet space with respect to an independent variable is the same as ordinary differentiation with respect to that variable if the jet coordinates are treated temporarily as functions of the independent variables.

• 

Let π:EM be a fiber bundle with base dimension n and fiber dimension m and let πk:JkE M be the k-th jet bundle. Introduce local coordinates (xi, uα, uiα, uijα, ..., uij  ℓα, ...) where, as usual, if s:ME is a section and σ=jksx:ME is the k-jet of s, then

uij  ℓασ = k sα xxi xixℓ and 1ijℓ dimM.

Then the total derivative of the jet coordinate uij  α with respect to the independent variable xk  is Dkuij  α = uij  ℓkα. If f  = fxi, uα, uiα, uijα... is a function on jet space, then by the chain rule

 Dk f = f xk + ukαf uα + uikαf   uiα + uijkαf   uijα  +  

Similarly, the total derivatives of differential forms dxi, duij  α and the contact form Θijℓα = duij  α - uij  ℓmαdxm with respect to the independent variable xk are given by

Dkdxi = 0,   Dk(duij  α )  = duijℓkα   and  DkΘijℓα  = Θijℓkα.

If ω1 and ω2 are 2 differential forms on jet space, then Dkω1 ω2  =  Dkω1ω2 + ω1Dkω2. One can summarize all these formulas by saying that total differentiation with respect to the independent variable xk coincides with Lie differentiation with respect to the total vector field Dk. Thus the total derivative with respect to xk commutes with the exterior derivative, the horizontal exterior derivative, and the vertical exterior derivative, that is,

Dk d = dDk ,   Dk d H= dHDk and Dk d V= dVDk.

• 

 If f is a function or differential form on a jet space and v an independent variable, then TotalDiff(f, v) calculates the total derivative of f with respect to v. If v is a list of r positive integers, then the r-fold iterated total derivative is calculated.

• 

The command TotalDiff is part of the DifferentialGeometry:-JetCalculus package.  It can be used in the form TotalDiff(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-TotalDiff(...).

Examples

withDifferentialGeometry:withJetCalculus:

 

Example 1.

First initialize the jet space for two independent variables x, y and two dependent variables u, v and prolong it to order 3.

DGsetupx,y,u,v,E,3:

 

Recall that u1,2, 2 represents the mixed 3rd derivative of u, once with respect to x and twice with respect to y.The total derivative of u1,2, 2 with respect to x is u1,1, 2, 2which represents the 4th derivative of u, twice with respect to x and twice with respect to y

The total derivative of u1,2,2 with respect to y is u1,2,2,2 which represents the 4th derivative of u, once with respect to x and 3 times with respect to y.

E > 

TotalDiffu1,2,2,x

u1,1,2,2

(2.1)
E > 

TotalDiffu1,2,2,y

u1,2,2,2

(2.2)

 

In place of the independent variables x or y the integer 1 or 2 can be used.

E > 

TotalDiffu1,2,2,1

u1,1,2,2

(2.3)
E > 

TotalDiffu1,2,2,2

u1,2,2,2

(2.4)

 

Here is a general formula for the total derivative of a function with dependencies on the 2-jet of u.

E > 

varsx,y,u,u1,u2,u1,1,u1,2,u2,2:

E > 

PDEtoolsdeclareFvars

Fx,y,u,u1,u2,u1,1,u1,2,u2,2will now be displayed asF

(2.5)
E > 

TotalDiffFvars,x

Fuu1+Fu1u1,1+Fu2u1,2+Fu1,1u1,1,1+Fu1,2u1,1,2+Fu2,2u1,2,2+Fx

(2.6)
E > 

TotalDiffFvars,y

Fuu2+Fu1u1,2+Fu2u2,2+Fu1,1u1,1,2+Fu1,2u1,2,2+Fu2,2u2,2,2+Fy

(2.7)

 

The total derivative satisfies the usual rules of differentiation.

E > 

TotalDiffyu1,0v0,1,y

yu1,0v0,1,2+yv0,1u0,1,2+u1,0v0,1

(2.8)
E > 

fsimplifyTotalDiffarctanu0,3v2,0,x

fu0,3v0,1,2u0,1,3v2,0u0,32+v2,02

(2.9)

 

Multiple total derivatives can also be calculated by using TotalDiff. We differentiate u2  2 times with respect to x and 3 times with respect to y to get u1,1,2,2,2.

E > 

TotalDiffu2,1,1,2,2,2

u1,1,2,2,2,2

(2.10)
E > 

TotalDiffuv,1,1,1

uv1,1,1+3v1,1u1+3v1u1,1+vu1,1,1

(2.11)

 

Example 2.

Total differentiation extends to differential forms and contact forms on jet spaces.

E > 

TotalDiffdu2,x

du1,2

(2.12)
E > 

TotalDiffdu2&wdv1,y

du2dv1,2dv1du2,2

(2.13)
E > 

TotalDiffCu2,x

Cu1,2

(2.14)
E > 

TotalDiffdu2,1,1,2

du1,1,2,2

(2.15)
E > 

TotalDiffdu2&wdv1,1,2

du2dv1,1,2dv1du1,2,2+du1,2dv1,2+du2,2dv1,1

(2.16)

 

Example 3.

The DifferentialGeometry package supports an alternative jet notation. For example, if there are 2 independent variables x,y, then u1,2 would now represent the 3rd mixed partial derivative of u, once with respect to x and twice with respect to y.

 

E > 

PreferencesJetNotation,JetNotation2

JetNotation1

(2.17)
E > 

DGsetupx,y,u,v,J,3:

J > 

TotalDiffu1,2,x

u2,2

(2.18)
J > 

TotalDiffu1,2,y

u1,3

(2.19)
E > 

TotalDiffu1,2,2,3

u3,5

(2.20)

 

Revert to the default jet notation.

J > 

PreferencesJetNotation,JetNotation1

JetNotation2

(2.21)

See Also

DifferentialGeometry

JetCalculus

TotalVector