JetCalculus[VerticalExteriorDerivative] - calculate the vertical exterior derivative of a bi-form on a jet space
Calling Sequences
VerticalExteriorDerivative(ω)
Parameters
ω - a differential bi-form on the jet space of a fiber bundle
Description
Examples
Let π:E→M be a fiber bundle, with base dimension n and fiber dimension m and let π∞ :J∞E →M be the infinite jet bundle of E. The p -forms ΩpJ∞E can be graded by horizontal and vertical (or contact) degree and, with respect to this grading, the exterior derivative operator can be decomposed as d = dH + dV. The horizontal exterior derivative dH raises the horizontal degree by 1 and the vertical exterior derivative dV raises the vertical degree by 1. For details, see HorizontalExteriorDerivative.
The command VerticalExteriorDerivative(ω) returns the vertical exterior derivative dVω.
The command VerticalExteriorDerivative is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form VerticalExteriorDerivative(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-VerticalExteriorDerivative(...).
with⁡DifferentialGeometry:with⁡JetCalculus:
Example 1.
Create the jet space J2Ewith coordinates x, y, u, v → x,y.
DGsetup⁡x,y,u,v,E,2:
Calculate the vertical exterior derivative of a function.
F≔f⁡x,y,u,v,u1,u2,v1,v2:
PDEtoolsdeclare⁡F,quiet:
VerticalExteriorDerivative⁡F
fu⁢Cu+fv⁢Cv+fu1⁢Cu1+fu2⁢Cu2+fv1⁢Cv1+fv2⁢Cv2
Calculate the vertical exterior derivative of a type (1, 0) bi-form.
ω1≔evalDG⁡u2,2⁢Dx+v1,1,1⁢Dy
ω1≔u2,2⁢Dx+v1,1,1⁢Dy
VerticalExteriorDerivative⁡ω1
−Dx⁢⋀⁢Cu2,2−Dy⁢⋀⁢Cv1,1,1
Calculate the vertical exterior derivative of a type (0, 2) bi-form.
ω2≔evalDG⁡v1,1⁢u2,2,2⁢Cu2&wCv2
ω2≔v1,1⁢u2,2,2⁢Cu2⁢⋀⁢Cv2
VerticalExteriorDerivative⁡ω2
u2,2,2⁢Cu2⁢⋀⁢Cv2⁢⋀⁢Cv1,1+v1,1⁢Cu2⁢⋀⁢Cv2⁢⋀⁢Cu2,2,2
See Also
DifferentialGeometry
JetCalculus
ExteriorDerivative
HorizontalExteriorDerivative
HorizontalHomotopy
VerticalHomotopy
Download Help Document