LieAlgebras[Adjoint] - find the ad Matrix for a vector in a Lie algebra
LieAlgebras[AdjointExp] - find the Ad Matrix for a vector in a Lie algebra
Calling Sequences
Adjoint(alg)
Adjoint(alg, keyword)
Adjoint(x, h, k)
AdjointExp(x)
Parameters
alg - (optional) the name of a Lie algebra 𝔤
keyword - (optional) the keyword argument representationspace = framename, where framename is the name of an initialized frame
x - a vector in a Lie algebra g
h - (optional) a list of vectors defining a basis for a subspace h in a Lie algebra 𝔤
k - (optional) a list of vectors defining a complementary basis in 𝔤 to h
Description
Examples
Let 𝔤 be a Lie algebra and x ∈ 𝔤. Then the adjoint transformation defined by x is the linear transformation adx : 𝔤 → 𝔤 defined by adxy = x, y for all y ∈ 𝔤. The transformation adxalways defines a derivation on 𝔤, that is, adxy, z = adxy, z + y, adxz. The mapping x→adx defines a representation of 𝔤. The exponential of adx, usually denoted by Ad(x), is a Lie algebra isomorphism.
Adjoint(x) returns the matrix representing the linear transformation adx.
AdjointExp(x) returns the matrix representing the linear transformation Ad(x) = exp(adx).
Adjoint() returns the list of adjoint matrices for the basis vectors of the current algebra 𝔤.
Adjoint(alg) returns the list of adjoint matrices for the basis vectors of the algebra alg.
Adjoint(alg , representationspace = V) returns the adjoint representation of 𝔤, with representation space V.
Adjoint(x, h) calculates the restriction of ad(x) to the subspace h (h must be an ad(x) invariant subspace).
Adjoint(x, h, k) calculates Adjoint(x) on the vector space quotient g/k with respect to the basis determined by h (k must be an ad(x) invariant subspace).
The commands Adjoint and AdjointExp are part of the DifferentialGeometry:-LieAlgebras package. They can be used in the form Adjoint(...) and AdjointExp(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Adjoint(...) and DifferentialGeometry:-LieAlgebras:-AdjointExp(...).
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
First initialize a Lie algebra.
L1≔_DG⁡LieAlgebra,Alg1,4,1,3,1,1,2,4,1,1,1,4,2,−1,2,3,2,1
L1:=e1,e3=e1,e1,e4=−e2,e2,e3=e2,e2,e4=e1
DGsetup⁡L1:
Adjoint⁡t⁢e4
AdjointExp(t*e4) is given by the Matrix exponential of Adjoint(t*e4).
AdjointExp⁡t⁢e4
Adjoint⁡e1+2⁢e3
Calculate the restriction of Adjoint(e3) to the subspace defined by [e1, e2].
Adjoint⁡e3,Adjoint⁡e3,e1,e2
Calculate the linear transformation induced by Adjoint(e4 + 2*e3) on the quotient of [e1, e2, e3, e4] by the subspace defined by [e3, e4] with respect to the basis [e1, e2].
Adjoint⁡e4+2⁢e3,Adjoint⁡e4+2⁢e3,e1,e2,e3,e4
Calculate the adjoint representation of Alg1. First define the representation space.
DGsetup⁡x1,x2,x3,x4,V
frame name: V
ρ≔Adjoint⁡Alg1,representationspace=V
Query⁡ρ,Representation
true
See Also
DifferentialGeometry
LieAlgebras
LinearAlgebra[MatrixExponential]
Representation
Download Help Document