LieAlgebras[AscendingIdealsBasis] - find a basis for a solvable Lie algebra which defines an ascending chain of ideals
Calling Sequences
AscendingIdealsBasis(Alg)
Parameters
Alg - (optional) Maple name or string, the name of an initialized Lie algebra
Description
Examples
Every (complex) solvable Lie algebra admits a basis e1, e2, ... , en such that the subspace spane1, e2, ... , ek form an ideal in spane1, e2, ... , ek+1. The command AscendingIdealsBasis calculates such a basis. This basis can be quite useful in a situation where the matrix exponentials of the adjoint matrices are needed.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
First we initialize a 5-dimensional Lie algebra.
L≔_DG⁡LieAlgebra,Alg1,5,1,2,1,−22,1,2,2,−11,1,2,3,21,1,2,4,1,1,2,5,11,1,3,1,3,1,3,2,2,1,3,3,−4,1,4,1,1,1,4,5,−2,1,5,1,−12,1,5,2,−7,1,5,3,13,1,5,4,1,1,5,5,3,2,3,1,12,2,3,2,6,2,3,3,−11,2,3,4,−1,2,3,5,−6,2,4,1,19,2,4,2,9,2,4,3,−19,2,4,4,1,2,4,5,−11,2,5,1,16,2,5,2,8,2,5,3,−16,2,5,5,−8,3,4,1,2,3,4,3,−1,3,4,4,1,3,4,5,−4,3,5,1,−8,3,5,2,−5,3,5,3,9,3,5,4,1,3,5,5,1,4,5,1,−7,4,5,2,−4,4,5,3,7,4,5,4,1,4,5,5,2:
DGsetup⁡L
Lie algebra: Alg1
We can use the command Query/"Solvable" to check that this is a solvable Lie algebra.
Query⁡Solvable
true
Now we calculate a basis with the ascending ideals property.
B≔AscendingIdealsBasis⁡
B:=e1−2⁢e5,e2−2⁢e4+3⁢e5,e3−e4,e1,e2
The following two commands check, for example, that span B1..3 is an ideal in span B1..4.
C≔BracketOfSubspaces⁡B1..3,B1..4
C:=−24⁢e1−14⁢e2+26⁢e3+2⁢e4+6⁢e5,60⁢e1+32⁢e2−60⁢e3−4⁢e4−24⁢e5,−2⁢e1−2⁢e2+4⁢e3−2⁢e5
GetComponents⁡C,B1..3,trueorfalse=on
The command Query/"AscendingIdealsBasis" will verify that the basis B has the ascending ideals property.
Query⁡B,AscendingIdealsBasis
The ascending ideals property becomes apparent if we re-initialize the Lie algebra using the basis B (using the command LieAlgebraData).
L2≔LieAlgebraData⁡B,alg2
L2:=e1,e4=−24⁢e1−14⁢e2+26⁢e3,e1,e5=10⁢e1+5⁢e2−11⁢e3,e2,e4=60⁢e1+32⁢e2−60⁢e3,e2,e5=−10⁢e1−6⁢e2+10⁢e3,e3,e4=−2⁢e1−2⁢e2+4⁢e3,e3,e5=7⁢e1+3⁢e2−8⁢e3,e4,e5=−22⁢e1−11⁢e2+21⁢e3
DGsetup⁡L2
Lie algebra: alg2
MultiplicationTable⁡LieTable
See Also
DifferentialGeometry
LieAlgebras
BracketOfSubspaces
GetComponents
MultiplicationTable
Query
Download Help Document