LieAlgebras[CartanMatrixToStandardForm] - transform a Cartan matrix to standard form
Calling Sequences
CartanMatrixToStandardForm(C,SR)
Parameters
C - a square matrix
SR - (optional) a list of vectors, the simple roots used to determine the Cartan matrix for a simple Lie algebra
Description
Examples
Let Δ0= α1 , α2, ... , αm⊆ Δ be a set of simple roots for g. Then the associated Cartan matrix is the m×m matrix with entries
Cij= 2αi, αj αij, αj = 2 Hαi, Hαj Hαi, Hαi .
(See CartanMatrix for the definition of the vectors Hαi )
A permutation of the roots leads to a different but equivalent Cartan matrix.
The command CartanMatrixToStandardForm transforms a Cartan matrix to the standard form for each root type.
The command returns the Cartan matrix in standard form, a permutation matrix, and a string denoting the root type. The permutation matrix will transform the given Cartan matrix to its standard form by a similarity transformation.
If the second calling is invoked, then the second element of the output is the permuted set of simple roots which will generate the standard form of the Cartan matrix.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
We define 4 different Cartan matrices and calculate their standard forms and root type.
CM1≔Matrix⁡2,−1,0,−1,−1,0,−1,2,0,0,0,0,0,0,2,0,0,−1,−1,0,0,2,0,−1,−1,0,0,0,2,0,0,0,−1,−1,0,2
CM2≔Matrix⁡2,0,0,0,−1,0,0,2,−1,0,0,0,0,−1,2,0,−1,−1,0,0,0,2,0,−1,−1,0,−1,0,2,0,0,0,−1,−1,0,2
CM3≔Matrix⁡2,0,0,−1,−1,0,0,2,0,−1,0,−1,0,0,2,0,−2,0,−1,−1,0,2,0,0,−1,0,−1,0,2,0,0,−1,0,0,0,2
CM4≔Matrix⁡2,−2,0,0,−1,0,−1,2,0,0,0,0,0,0,2,−1,0,0,0,0,−1,2,0,−1,−1,0,0,0,2,−1,0,0,0,−1,−1,2
Here are the standard forms, permutation matrices and root types.
C1,P1,T1≔CartanMatrixToStandardForm⁡CM1
C2,P2,T2≔CartanMatrixToStandardForm⁡CM2
C3,P3,T3≔CartanMatrixToStandardForm⁡CM3
C4,P4,T4≔CartanMatrixToStandardForm⁡CM4
For each example the second output is a permutation matrix which transforms the given input Cartan matrix to its standard form.
LinearAlgebra:-Equal⁡P1−1·CM1·P1,C1
true
LinearAlgebra:-Equal⁡P2−1·CM2·P2,C2
LinearAlgebra:-Equal⁡P3−1·CM3·P3,C3
LinearAlgebra:-Equal⁡P4−1·CM4·P4,C4
Example 2.
We define a 21-dimensional simple Lie algebra and calculate its root type.
LD≔_DG⁡LieAlgebra,alg,21,1,2,3,1,1,3,2,−1,1,4,5,1,1,5,4,−2,1,5,7,2,1,6,8,1,1,7,5,−1,1,8,6,−1,1,10,11,1,1,11,10,−2,1,11,13,2,1,12,14,1,1,13,11,−1,1,14,12,−1,1,16,17,1,1,17,16,−2,1,17,19,2,1,18,20,1,1,19,17,−1,1,20,18,−1,2,3,1,1,2,4,6,1,2,5,8,1,2,6,4,−2,2,6,9,2,2,8,5,−1,2,9,6,−1,2,10,12,1,2,11,14,1,2,12,10,−2,2,12,15,2,2,14,11,−1,2,15,12,−1,2,16,18,1,2,17,20,1,2,18,16,−2,2,18,21,2,2,20,17,−1,2,21,18,−1,3,5,6,1,3,6,5,−1,3,7,8,1,3,8,7,−2,3,8,9,2,3,9,8,−1,3,11,12,1,3,12,11,−1,3,13,14,1,3,14,13,−2,3,14,15,2,3,15,14,−1,3,17,18,1,3,18,17,−1,3,19,20,1,3,20,19,−2,3,20,21,2,3,21,20,−1,4,5,1,1,4,6,2,1,4,10,16,2,4,11,17,1,4,12,18,1,4,16,10,−2,4,17,11,−1,4,18,12,−1,5,6,3,1,5,7,1,1,5,8,2,1,5,10,17,1,5,11,16,2,5,11,19,2,5,12,20,1,5,13,17,1,5,14,18,1,5,16,11,−1,5,17,10,−2,5,17,13,−2,5,18,14,−1,5,19,11,−1,5,20,12,−1,6,8,1,1,6,9,2,1,6,10,18,1,6,11,20,1,6,12,16,2,6,12,21,2,6,14,17,1,6,15,18,1,6,16,12,−1,6,17,14,−1,6,18,10,−2,6,18,15,−2,6,20,11,−1,6,21,12,−1,7,8,3,1,7,11,17,1,7,13,19,2,7,14,20,1,7,17,11,−1,7,19,13,−2,7,20,14,−1,8,9,3,1,8,11,18,1,8,12,17,1,8,13,20,1,8,14,19,2,8,14,21,2,8,15,20,1,8,17,12,−1,8,18,11,−1,8,19,14,−1,8,20,13,−2,8,20,15,−2,8,21,14,−1,9,12,18,1,9,14,20,1,9,15,21,2,9,18,12,−1,9,20,14,−1,9,21,15,−2,10,11,1,1,10,12,2,1,10,16,4,2,10,17,5,1,10,18,6,1,11,12,3,1,11,13,1,1,11,14,2,1,11,16,5,1,11,17,4,2,11,17,7,2,11,18,8,1,11,19,5,1,11,20,6,1,12,14,1,1,12,15,2,1,12,16,6,1,12,17,8,1,12,18,4,2,12,18,9,2,12,20,5,1,12,21,6,1,13,14,3,1,13,17,5,1,13,19,7,2,13,20,8,1,14,15,3,1,14,17,6,1,14,18,5,1,14,19,8,1,14,20,7,2,14,20,9,2,14,21,8,1,15,18,6,1,15,20,8,1,15,21,9,2,16,17,1,1,16,18,2,1,17,18,3,1,17,19,1,1,17,20,2,1,18,20,1,1,18,21,2,1,19,20,3,1,20,21,3,1:
Initialize this Lie algebra.
DGsetup⁡LD:
Find a Cartan subalgebra.
CSA≔CartanSubalgebra⁡
CSA:=e1,e16+e19,e21
Find the root space decomposition.
RSD≔RootSpaceDecomposition⁡CSA
RSD:=table0,0,−2⁢I=e9+I⁢e15,−2⁢I,2⁢I,0=e4+I⁢e5−e7−I⁢e10+e11+I⁢e13,I,I,I=e6−I⁢e8−I⁢e12−e14,−I,−I,−I=e6+I⁢e8+I⁢e12−e14,I,−I,I=e2−I⁢e3−I⁢e18−e20,−I,I,−I=e2+I⁢e3+I⁢e18−e20,2⁢I,2⁢I,0=e4−I⁢e5−e7−I⁢e10−e11+I⁢e13,2⁢I,−2⁢I,0=e4−I⁢e5−e7+I⁢e10+e11−I⁢e13,−2⁢I,0,0=e16+I⁢e17−e19,I,I,−I=e2−I⁢e3+I⁢e18+e20,0,0,2⁢I=e9−I⁢e15,−I,−I,I=e2+I⁢e3−I⁢e18+e20,I,−I,−I=e6−I⁢e8+I⁢e12+e14,2⁢I,0,0=e16−I⁢e17−e19,0,−2⁢I,0=e4+e7+I⁢e10+I⁢e13,−I,I,I=e6+I⁢e8−I⁢e12+e14,0,2⁢I,0=e4+e7−I⁢e10−I⁢e13,−2⁢I,−2⁢I,0=e4+I⁢e5−e7+I⁢e10−e11−I⁢e13
Find the roots, positive roots and a choice of simple roots.
RT≔LieAlgebraRoots⁡RSD
PR≔PositiveRoots⁡RT,7⁢I,3⁢I,I
SR≔SimpleRoots⁡PR
Find the Cartan matrix.
CM≔CartanMatrix⁡SR,RSD
Transform the Cartan matrix to standard form. Here we use the second calling sequence. The command CartanMatrixToStandardForm now returns a permuted set of simple roots for which the Cartan matrix will be in standard form.
C1,S1,T1≔CartanMatrixToStandardForm⁡CM,SR
Check the result by re-calculating the Cartan matrix with respect to the permuted set of roots. We get the standard form immediately.
CartanMatrix⁡S1,RSD
The root type of our 21-dimensional Lie algebra is C3 .
See Also
DifferentialGeometry
CartanMatrix
CartanSubalgebra
PositiveRoots
RootSpaceDecomposition
SimpleRoots
Download Help Document