LieAlgebras[DynkinDiagram] - plot the Dynkin diagram for a given root type
Calling Sequences
DynkinDiagram( RT, m, option)
Parameters
RT - a string, denoting a root type "A", "B', "C", "D", "E", "F", "G"
m - a positive integer
version - optional, the integer 1 or 2
Description
Examples
The Dynkin diagram is a graphic means of describing abstract root systems or, equivalently, of characterizing Cartan matrices. The command DynkinDiagram plots the Dynkin diagram for each root type Am , Bm , Cm , Dm , E6 , E7 , E8 , F4 , G2 .
See Details of Cartan Matrices and Dynkin Diagrams for more information on the relationship between these two ways of characterizing complex simple Lie algebras.
For real Lie algebras, the Satake diagrams provide the counterpart to the Dynkin diagrams.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
Here are the Dynkin diagrams for each classical root type of rank 6.
DynkinDiagram⁡A,6
DynkinDiagram⁡B,6
DynkinDiagram⁡C,6
DynkinDiagram⁡D,6
Example 2.
Here are the Dynkin diagrams for two of the exceptional root systems.
DynkinDiagram⁡F,4
DynkinDiagram⁡G,2
Example 3. For the exceptional roots systems E6, E7, E8 there are two different conventions for the labelling of the roots. Either one can be plotted using the keyword argument version. The default is version = 1.
DynkinDiagram⁡E,8
DynkinDiagram⁡E,8,version=2
See Also
DifferentialGeometry
CartanMatrix
Cartan Matrix Details
RootSpaceDecomposition
SimpleRoots
SatakeDiagram
Download Help Document