LieAlgebras[InfinitesimalCoadjointAction] - find the vector fields defining the infinitesimal co-adjoint action of a Lie group on its Lie algebra
Calling Sequences
InfinitesimalCoadjointAction(Alg, M)
Parameters
Alg - name or string, the name of an initialized Lie algebra
M - name or string, the name of an initialized manifold
Description
Examples
Let G be an n-dimensional Lie group with Lie algebra 𝔤and let ei, ej = Cijk ek be the structure equations for 𝔤. If xi are coordinates for the dual vector space 𝔤*, then the infinitesimal generators for the co-adjoint action of G on 𝔤*are the vector fields Xi= Cijk xj∂ ∂xk .
The command InfinitesimalCoadjointAction(Algebra, Manifold) calculates the vector fields Xi for the Lie algebra Algebra using the coordinates for the dual space provide by M.
The command InfinitesimalCoadjointAction is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form InfinitesimalCoadjointAction(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:- LieAlgebras:- InfinitesimalCoadjointAction(...).
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
First we initialize a Lie algebra.
LD1≔_DG⁡LieAlgebra,alg1,3,1,3,1,1,2,3,1,1,2,3,2,1
LD1:=e1,e3=e1,e2,e3=e1+e2
DGsetup⁡LD1
Lie algebra: alg1
Now define coordinates for the dual of the Lie algebra.
DGsetup⁡x,y,z,N
frame name: N
Calculate the infinitesimal generators for the co-adjoint action.
Gamma≔InfinitesimalCoadjointAction⁡alg1,N
Γ:=x⁢D_z,x+y⁢D_z,−x⁢D_x+−x−y⁢D_y
The center of the Lie algebra alg1 is trivial and therefore the structure equations for the Lie algebra Γ are the same as those for alg1.
LieAlgebraData⁡Gamma
e1,e3=e1,e2,e3=e1+e2
The vector fields Γ may be calculated directly using the Adjoint and convert/DGvector commands. For example, we obtain the last vector in Γ as follows.
A≔Adjoint⁡e3
convert⁡LinearAlgebra:-Transpose⁡A,DGvector,N
−x⁢D_x+−x−y⁢D_y
Example 2.
First we initialize a 4-dimensional Lie algebra.
LD2≔_DG⁡LieAlgebra,alg2,4,2,4,1,1,3,4,3,1
LD2:=e2,e4=e1,e3,e4=e3
DGsetup⁡LD2
Lie algebra: alg2
DGsetup⁡w,x,y,z,N2
frame name: N2
Γ2≔InfinitesimalCoadjointAction⁡alg2,N2
Γ2:=w⁢D_z,y⁢D_z,−w⁢D_x−y⁢D_y
In this example, the Lie algebra has a non-trivial center e1 and now the structure equations for Γ2 are those for the quotient of alg2 by its center.
Center⁡alg2
e1
QuotientAlgebra⁡e1,e2,e3,e4
e2,e3=e2
LieAlgebraData⁡Γ2
Example 3.
The invariants for the co-adjoint action are called generalized Casimir operators (See J. Patera, R. T. Sharp , P. Winternitz and H. Zassenhaus, Invariants of real low dimensional Lie algebras, J. Math. Phys. 17, No 6, June 1976, 966--994).
We calculate the generalized Casimir operators for the Lie algebra [5,12] from this article. First use the Retrieve command to obtain the structure equations for this algebra and initialize the Lie algebra.
LD3≔Library:-Retrieve⁡Winternitz,1,5,12,alg3
LD3:=e1,e5=e1,e2,e5=e1+e2,e3,e5=e2+e3,e4,e5=e3+e4
DGsetup⁡LD3
Lie algebra: alg3
DGsetup⁡x1,x2,x3,x4,x5,N3
frame name: N3
Γ3≔InfinitesimalCoadjointAction⁡alg3,N3
Γ3:=x1⁢D_x5,x1+x2⁢D_x5,x2+x3⁢D_x5,x3+x4⁢D_x5,−x1⁢D_x1+−x1−x2⁢D_x2+−x2−x3⁢D_x3+−x3−x4⁢D_x4
We use the InvariantGeometricObjectFields command to calculate the functions which invariant under the group generated by Γ3.
C≔expand⁡GroupActions:-InvariantGeometricObjectFields⁡Γ3,1,output=list
C:=−ln⁡x1+x2x1,12⁢ln⁡x12−ln⁡x1⁢x2x1+x3x1,−16⁢ln⁡x13+12⁢ln⁡x12⁢x2x1−ln⁡x1⁢x3x1+x4x1
Functional combinations of these invariants give the formulas for the generalized Casimir operators in the Patera, Sharp, et al. paper.
expand⁡expand⁡exp⁡−C1,symbolic,2⁢C2−C12,3⁢C3+C13−3⁢C1⁢C2
x1ⅇx2x1,2⁢x3x1−x22x12,3⁢x4x1+x23x13−3⁢x2⁢x3x12
See Also
DifferentialGeometry
GroupActions
Library
LieAlgebras
convert/DGvector
LieAlgebraData
Adjoint
Retrieve
InvariantGeometricObjectFields
Download Help Document