InfinitesimalCoadjointAction - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : InfinitesimalCoadjointAction

LieAlgebras[InfinitesimalCoadjointAction] - find the vector fields defining the infinitesimal co-adjoint action of a Lie group on its Lie algebra

Calling Sequences

     InfinitesimalCoadjointAction(Alg,  M)

Parameters

     Alg       - name or string, the name of an initialized Lie algebra

     M         - name or string, the name of an initialized manifold

 

Description

Examples

Description

• 

Let G be an n-dimensional Lie group with Lie algebra 𝔤and let ei, ej = Cijk ek be the structure equations for 𝔤. If xi are coordinates for the dual vector space 𝔤*, then the infinitesimal generators for the co-adjoint action of G on 𝔤*are the vector fields Xi= Cijk xj   xk .

• 

The command InfinitesimalCoadjointAction(Algebra, Manifold) calculates the vector fields Xi for the Lie algebra Algebra using the coordinates for the dual space provide by M.

• 

The command InfinitesimalCoadjointAction is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form InfinitesimalCoadjointAction(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:- LieAlgebras:- InfinitesimalCoadjointAction(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First we initialize a Lie algebra.

LD1_DGLieAlgebra,alg1,3,1,3,1,1,2,3,1,1,2,3,2,1

LD1:=e1,e3=e1,e2,e3=e1+e2

(2.1)

DGsetupLD1

Lie algebra: alg1

(2.2)

Now define coordinates for the dual of the Lie algebra.

alg1 > 

DGsetupx,y,z,N

frame name: N

(2.3)

 

Calculate the infinitesimal generators for the co-adjoint action.

N > 

GammaInfinitesimalCoadjointActionalg1,N

Γ:=xD_z,x+yD_z,xD_x+xyD_y

(2.4)

 

The center of the Lie algebra alg1 is trivial and therefore the structure equations for the Lie algebra Γ are the same as those for alg1.

N > 

LieAlgebraDataGamma

e1,e3=e1,e2,e3=e1+e2

(2.5)

 

The vector fields Γ may be calculated directly using the Adjoint and convert/DGvector commands. For example, we obtain the last vector in Γ as follows.

N > 

AAdjointe3

alg1 > 

convertLinearAlgebra:-TransposeA,DGvector,N

xD_x+xyD_y

(2.6)

 

Example 2.

First we initialize a 4-dimensional Lie algebra.

N > 

LD2_DGLieAlgebra,alg2,4,2,4,1,1,3,4,3,1

LD2:=e2,e4=e1,e3,e4=e3

(2.7)
N > 

DGsetupLD2

Lie algebra: alg2

(2.8)

 

Now define coordinates for the dual of the Lie algebra.

alg2 > 

DGsetupw,x,y,z,N2

frame name: N2

(2.9)

 

Calculate the infinitesimal generators for the co-adjoint action.

N2 > 

Γ2InfinitesimalCoadjointActionalg2,N2

Γ2:=wD_z,yD_z,wD_xyD_y

(2.10)

In this example, the Lie algebra has a non-trivial center e1 and now the structure equations for Γ2 are those for the quotient of alg2 by its center.

N2 > 

Centeralg2

e1

(2.11)
alg2 > 

QuotientAlgebrae1,e2,e3,e4

e2,e3=e2

(2.12)
alg2 > 

LieAlgebraDataΓ2

e2,e3=e2

(2.13)

 

Example 3.

The invariants for the co-adjoint action are called generalized Casimir operators (See J. Patera, R. T. Sharp , P. Winternitz and H. Zassenhaus, Invariants of real low dimensional Lie algebras, J. Math. Phys. 17, No 6, June 1976, 966--994).

 

We calculate the generalized Casimir operators for the Lie algebra [5,12] from this article. First use the Retrieve command to obtain the structure equations for this algebra and initialize the Lie algebra.

alg2 > 

LD3Library:-RetrieveWinternitz,1,5,12,alg3

LD3:=e1,e5=e1,e2,e5=e1+e2,e3,e5=e2+e3,e4,e5=e3+e4

(2.14)
alg2 > 

DGsetupLD3

Lie algebra: alg3

(2.15)

 

Calculate the infinitesimal generators for the co-adjoint action.

alg2 > 

DGsetupx1,x2,x3,x4,x5,N3

frame name: N3

(2.16)
N3 > 

Γ3InfinitesimalCoadjointActionalg3,N3

Γ3:=x1D_x5,x1+x2D_x5,x2+x3D_x5,x3+x4D_x5,x1D_x1+x1x2D_x2+x2x3D_x3+x3x4D_x4

(2.17)

 

We use the  InvariantGeometricObjectFields command to calculate the functions which invariant under the group generated by Γ3.

N3 > 

CexpandGroupActions:-InvariantGeometricObjectFieldsΓ3,1,output=list

C:=lnx1+x2x1,12lnx12lnx1x2x1+x3x1,16lnx13+12lnx12x2x1lnx1x3x1+x4x1

(2.18)

Functional combinations of these invariants give the formulas for the generalized Casimir operators in the Patera, Sharp, et al. paper.

N3 > 

expandexpandexpC1,symbolic,2C2C12,3C3+C133C1C2

x1ⅇx2x1,2x3x1x22x12,3x4x1+x23x133x2x3x12

(2.19)

See Also

DifferentialGeometry

GroupActions

Library

LieAlgebras

convert/DGvector

LieAlgebraData

Adjoint

Retrieve

InvariantGeometricObjectFields