Query[CartanInvolution] - check if a linear transformation of a semi-simple, real Lie algebra is a Cartan involution
Calling Sequences
Query(Theta, CartanInvolution)
Parameters
Theta - a transformation, mapping a semi-simple Lie algebra to itself
Description
Examples
See Also
Let g be a semi-simple, real Lie algebra. Then g is called compact if the Killing form , of g is negative-definite, otherwise g is called non-compact.
A Cartan involution of g is a Lie algebra automorphism Θ : g → g such that [i] Θ2 = Id, and [ii] the symmetric bilinear form BΘx,y = −x,Θy is positive-definite.
with⁡DifferentialGeometry:with⁡LieAlgebras:
We check to see if some transformations of sl2 are Cartan involutions. Initialize the Lie algebra sl2.
LD≔LieAlgebraData⁡h,x=2⁢x,h,y=−2⁢y,x,y=h,h,x,y,sl2
LD:=e1,e2=2⁢e2,e1,e3=−2⁢e3,e2,e3=e1
DGsetup⁡LD
Lie algebra: sl2
Define a transformation Θ1 and check that it is an involution.
Θ1≔Transformation⁡e1,−e1,e2,−e3,e3,−e2
Θ1:=e1,−e1,e2,−e3,e3,−e2
Query⁡Θ1,CartanInvolution
true
Define a transformation Θ2. It is a homomorphism, Θ2 = Id, but the symmetric bilinear form BΘx,y = − x,Θy is not positive-definite.
Θ2≔Transformation⁡e1,e1,e2,−e2,e3,−e3
Θ2:=e1,e1,e2,−e2,e3,−e3
Query⁡Θ2,CartanInvolution
false
The map Θ2 is a homomorphism.
Query⁡Θ2,Homomorphism
The map Θ2 satisfies Θ22 = Id,
ComposeTransformations⁡Θ2,Θ2
e1,e1,e2,e2,e3,e3
The symmetric bilinear form BΘx,y = −x,Θy is not positive-definite.
V≔e1,e2,e3
V:=e1,e2,e3
Matrix⁡3,3,i,j↦Killing⁡Vi,ApplyHomomorphism⁡Θ2,Vj
DifferentialGeometry, ApplyHomomorphism, ComposeTransformations, Killing, Query[Homomorphism], Transformation
Download Help Document