DifferentialGeometry/LieAlgebras/Query/CartanSubalgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/CartanSubalgebra

Query[CartanSubalgebra] - check if a list of vectors defines a Cartan subalgebra

Calling Sequences

     Query(A, options , CartanSubalgebra)

Parameters

     A        - a list of vectors, defining a subspace of a Lie algebra

     options  - one or more of the keyword arguments rank = n (where n  is a positive integer), algebratype  = "Semisimple" or  algebratype  = "Simple"

 

Description

Examples

Description

• 

Let 𝔤 be a Lie algebra. A Cartan subalgebra h is a nilpotent subalgebra whose normalizer in g is itself, that is, nor𝔥 = 𝔥 .

• 

If the Lie algebra 𝔤  is semi-simple and the rank of the Lie algebra is m, then any Cartan subalgebra is of dimension m and is Abelian. This simplifies checking if a given subspace of vectors is a Cartan subalgebra ( the nilpotent character of h need not be verified).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We test if certain subalgebras of sl3 are Cartan subalgebras. First define the standard matrix representation for sl3 as the space of 3 × 3 trace-free matrices.

 

Amapconvert,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,Matrix

 

Calculate the structure equations for these matrices and initialize the resulting Lie algebra.

LDLieAlgebraDataA,sl3

LD:=e1,e3=2e3,e1,e4=e4,e1,e5=2e5,e1,e6=e6,e1,e7=e7,e1,e8=e8,e2,e3=e3,e2,e4=e4,e2,e5=e5,e2,e6=2e6,e2,e7=e7,e2,e8=2e8,e3,e5=e1,e3,e6=e4,e3,e7=e8,e4,e5=e6,e4,e7=e1+e2,e4,e8=e3,e5,e8=e7,e6,e7=e5,e6,e8=e2

(2.1)

DGsetupLD

Lie algebra: sl3

(2.2)

 

Let's check that sl3 is semi-simple.

sl3 > 

Querysl3,Semisimple

true

(2.3)

 

Test to see if a list of vectors defines a Cartan subalgebra.

sl3 > 

Ae1,e2

A:=e1,e2

(2.4)
sl3 > 

QueryA,CartanSubalgebra

true

(2.5)

 

 Since A  has 2 elements, this implies that the rank of  sl3  is 2. We can use this information to simplify checking that other subalgebras are Cartan subalgebras

sl3 > 

AevalDGe1+e6,e22e6

A:=e1+e6,e22e6

(2.6)
sl3 > 

QueryA,rank=2,algebratype=Semisimple,CartanSubalgebra

true

(2.7)

 

Here is a 2-dimensional Abelian subalgebra which is not self-normalizing and therefore not a Cartan subalgebra.

sl3 > 

Ae3,e4

A:=e3,e4

(2.8)
sl3 > 

QueryA,CartanSubalgebra

false

(2.9)
sl3 > 

SubalgebraNormalizerA

e8,e6,e4,e3,e2,e1

(2.10)

 

Example 2.

The notion of a Cartan subalgebra is not restricted to semi-simple Lie algebras. We define a solvable Lie algebra and test to see if some subalgebras are Cartan subalgebras.

sl3 > 

LD_DGLieAlgebra,alg,5,1,4,1,a,2,4,2,1,3,4,3,1,1,5,1,1,3,5,2,1

LD:=e1,e4=ae1,e1,e5=e1,e2,e4=e2,e3,e4=e3,e3,e5=e2

(2.11)
sl3 > 

DGsetupLD

Lie algebra: alg

(2.12)
alg > 

QuerySolvable

true

(2.13)
alg > 

Ae4,e5

A:=e4,e5

(2.14)
alg > 

QueryA,CartanSubalgebra

true

(2.15)

 

Any subalgebra which is an ideal cannot be a Cartan subalgebra.

alg > 

Ae1,e2

A:=e1,e2

(2.16)
alg > 

QueryA,Ideal

true

(2.17)
alg > 

QueryA,CartanSubalgebra

false

(2.18)

See Also

DifferentialGeometry

CartanSubalgebra

LieAlgebraData

Query[Ideal]

Query[Solvable]

Query[Subalgebra]

Query[Semisimple]