Query[ParabolicSubalgebra] - check if a list of vectors defines a parabolic subalgebra of a semi-simple Lie algebra
Calling Sequences
Query(P, Parabolic)
Parameters
P - a list of vectors, defining a subalgebra of a semi-simple Lie algebra
Description
Examples
Let g be a semi-simple Lie algebra. A Borel subalgebra b is any maximal solvable subalgebra. A parabolic subalgebra p is any subalgebra containing a Borel subalgebra. Alternatively, a subalgebra p is parabolic if its nilradical is the orthogonal complement of p with respect to the Killing form B.
This Query command returns true if the subalgebra p defined by the vectors P satisfies nil𝔭 = 𝔭⊥.
with⁡DifferentialGeometry:with⁡LieAlgebras:
We check to see if 3 subalgebras of sl3are parabolic. We construct the Lie algebra sl3directly from its standard matrix representation.
M≔map⁡Matrix,1,0,0,0,0,0,0,0,−1,0,0,0,0,1,0,0,0,−1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0
LD≔LieAlgebraData⁡M,sl3
LD:=e1,e3=e3,e1,e4=2⁢e4,e1,e5=−e5,e1,e6=e6,e1,e7=−2⁢e7,e1,e8=−e8,e2,e3=−e3,e2,e4=e4,e2,e5=e5,e2,e6=2⁢e6,e2,e7=−e7,e2,e8=−2⁢e8,e3,e5=−e2+e1,e3,e6=e4,e3,e7=−e8,e4,e5=−e6,e4,e7=e1,e4,e8=e3,e5,e8=−e7,e6,e7=e5,e6,e8=e2
Initialize the Lie algebra. We label the basis elements for sl3 in a manner consistent with its matrix representation.
DGsetup⁡LD,E11,E22,E12,E13,E21,E23,E31,E32,ω11,ω22,ω12,ω13,ω21,ω23,ω31,ω32
Lie algebra: sl3
Subalgebra 1.
P1≔E11,E22,E12,E23,E13,E21
P1:=E11,E22,E12,E23,E13,E21
Query⁡P1,Parabolic
true
Subalgebra 2.
P2≔E11,E22,E12,E23,E13,E32
P2:=E11,E22,E12,E23,E13,E32
Query⁡P2,Parabolic
Subalgebra 3.
P3≔E11,E32,E23,E22
P3:=E11,E32,E23,E22
Query⁡P3,Subalgebra
Query⁡P3,Parabolic
false
See Also
DifferentialGeometry
LieAlgebras
ComplementaryBasis
Nilradical
ParabolicSubalgebra
Download Help Document