Query[RootSpaceDecomposition] - check that a table of roots and root spaces gives a root space decomposition for a semi-simple Lie algebra with respect to a given Cartan subalgebra
Calling Sequences
Query(CSA, RSD, RootSpaceDecomposition)
Parameters
CSA - a list of vectors in a Lie algebra, defining the Cartan subalgebra of a semi-simple Lie algebra
RSD - a table, defining a root space decomposition of a Lie algebra
options - the keyword argument output = "root"
Description
Examples
Let g be a semi-simple Lie algebra and h a Cartan subalgebra. Let h1, h2, ... , hm be a basis for 𝔥 . The linear transformations adhi are simultaneously diagonalizable over C -- if x ∈g is a common eigenvector for all these transformations, then adhix = hi , x = αi x . The m-tuples α = α1, α2, ... , αm ∈ ℂm are called the roots Δ of 𝔤 with respect to the Cartan subalgebra 𝔥 . The eigenspace decomposition 𝔤 = 𝔥 ⊕α ∈ Δ Rα is called the root space decomposition of g with respect to h.
For each root α and corresponding root space x, this query checks that hi , x = αi x . It also checks that the span of the Cartan subalgebra and the root spaces is the full Lie algebra 𝔤 .
With output = "root", this query will return the root α if the equations hi , x = αi x fail.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
Check the root space decomposition for a 10-dimensional Lie algebra.
Here is the Lie algebra data structure.
LD≔_DG⁡LieAlgebra,alg,10,1,2,3,1,1,3,2,−2,1,3,4,2,1,4,3,−1,1,5,6,1,1,6,5,−2,1,6,7,2,1,7,6,−1,1,8,9,1,1,9,8,−2,1,9,10,2,1,10,9,−1,2,3,1,1,2,5,8,2,2,6,9,1,2,8,5,−2,2,9,6,−1,3,4,1,1,3,5,9,1,3,6,8,2,3,6,10,2,3,7,9,1,3,8,6,−1,3,9,5,−2,3,9,7,−2,3,10,6,−1,4,6,9,1,4,7,10,2,4,9,6,−1,4,10,7,−2,5,6,1,1,5,8,2,2,5,9,3,1,6,7,1,1,6,8,3,1,6,9,2,2,6,9,4,2,6,10,3,1,7,9,3,1,7,10,4,2,8,9,1,1,9,10,1,1
LD:=e1,e2=e3,e1,e3=2⁢e4−2⁢e2,e1,e4=−e3,e1,e5=e6,e1,e6=2⁢e7−2⁢e5,e1,e7=−e6,e1,e8=e9,e1,e9=2⁢e10−2⁢e8,e1,e10=−e9,e2,e3=e1,e2,e5=2⁢e8,e2,e6=e9,e2,e8=−2⁢e5,e2,e9=−e6,e3,e4=e1,e3,e5=e9,e3,e6=2⁢e10+2⁢e8,e3,e7=e9,e3,e8=−e6,e3,e9=−2⁢e7−2⁢e5,e3,e10=−e6,e4,e6=e9,e4,e7=2⁢e10,e4,e9=−e6,e4,e10=−2⁢e7,e5,e6=e1,e5,e8=2⁢e2,e5,e9=e3,e6,e7=e1,e6,e8=e3,e6,e9=2⁢e4+2⁢e2,e6,e10=e3,e7,e9=e3,e7,e10=2⁢e4,e8,e9=e1,e9,e10=e1
Initialize the Lie algebra.
DGsetup⁡LD
Lie algebra: alg
Define a subalgebra and check that it is a Cartan subalgebra.
CSA≔evalDG⁡e1,e8+e10
CSA:=e1,e8+e10
Query⁡CSA,CartanSubalgebra
true
Define a table of roots and root spaces and check that it gives a root space decomposition.
RSD≔map⁡evalDG,table⁡2⁢I,0=e8−I⁢e9−e10,2⁢I,2⁢I=e2−I⁢e3−e4−I⁢e5−e6+I⁢e7,−2⁢I,2⁢I=e2+I⁢e3−e4−I⁢e5+e6+I⁢e7,0,2⁢I=e2+e4−I⁢e5−I⁢e7,−2⁢I,0=e8+I⁢e9−e10,2⁢I,−2⁢I=e2−I⁢e3−e4+I⁢e5+e6−I⁢e7,0,−2⁢I=e2+e4+I⁢e5+I⁢e7,−2⁢I,−2⁢I=e2+I⁢e3−e4+I⁢e5−e6−I⁢e7
RSD:=table0,2⁢I=e2+e4−I⁢e5−I⁢e7,−2⁢I,2⁢I=e2+I⁢e3−e4−I⁢e5+e6+I⁢e7,2⁢I,2⁢I=e2−I⁢e3−e4−I⁢e5−e6+I⁢e7,2⁢I,0=e8−I⁢e9−e10,−2⁢I,−2⁢I=e2+I⁢e3−e4+I⁢e5−e6−I⁢e7,2⁢I,−2⁢I=e2−I⁢e3−e4+I⁢e5+e6−I⁢e7,−2⁢I,0=e8+I⁢e9−e10,0,−2⁢I=e2+e4+I⁢e5+I⁢e7
Query⁡CSA,RSD,RootSpaceDecomposition
See Also
DifferentialGeometry
CartanSubalgebra
LieAlgebras
Query
Query[CartanSubalgebra]
RootSpaceDecomposition
Download Help Document