LieAlgebras[RootSpace] - find a root space for a semi-simple Lie algebra from a Cartan subalgebra or a root space decomposition
Calling Sequences
RootSpace(RV, CSA)
RootSpace(RV, RSD)
Parameters
RV - a column vector
CSA - a list of vectors in a semi-simple Lie algebra, defining a Cartan subalgebra
RSD - a table, defining a root space decomposition of a semi-simple Lie algebra
Description
Examples
Let g be a Lie algebra and h a Cartan subalgebra. Let h1, h2, ... , hm be a basis for 𝔥. A root for g with respect to this basis is a non-zero m-tuple of complex numbers α= α1, α2, ... ,αm such that adhix = αi x (*) for some x∈ 𝔤.
The set of x∈ 𝔤 which satisfy (*) is called the root space of g defined by α and denoted by Rα . A basic theorem in the structure theorem of semi-simple Lie algebras asserts that the root spaces Rα are 1-dimensional.
The first call sequence calculates the root space Rα for a given root. If α is not a root, then the zero vector (in 𝔤) is returned.
The second calling sequence simply returns the table entry in the table of root spaces corresponding to the root α.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
Use the command SimpleLieAlgebraData to obtain the Lie algebra data for the simple Lie algebra su4. This is the 15-dimensional Lie algebra of trace-free, skew-Hermitian matrices.
LD≔SimpleLieAlgebraData⁡su(4),su4,labelformat=gl,labels=U,η
LD:=e1,e4=e10,e1,e6=e12,e1,e7=e13,e1,e8=e14,e1,e9=2⁢e15,e1,e10=−e4,e1,e12=−e6,e1,e13=−e7,e1,e14=−e8,e1,e15=−2⁢e9,e2,e4=−e10,e2,e5=e11,e2,e6=e12,e2,e8=2⁢e14,e2,e9=e15,e2,e10=e4,e2,e11=−e5,e2,e12=−e6,e2,e14=−2⁢e8,e2,e15=−e9,e3,e5=−e11,e3,e6=2⁢e12,e3,e7=−e13,e3,e8=e14,e3,e9=e15,e3,e11=e5,e3,e12=−2⁢e6,e3,e13=e7,e3,e14=−e8,e3,e15=−e9,e4,e5=−e7,e4,e7=e5,e4,e8=−e9,e4,e9=e8,e4,e10=2⁢e1−2⁢e2,e4,e11=−e13,e4,e13=e11,e4,e14=−e15,e4,e15=e14,e5,e6=−e8,e5,e7=−e4,e5,e8=e6,e5,e10=e13,e5,e11=2⁢e2−2⁢e3,e5,e12=−e14,e5,e13=−e10,e5,e14=e12,e6,e7=e9,e6,e8=−e5,e6,e9=−e7,e6,e11=e14,e6,e12=2⁢e3,e6,e13=e15,e6,e14=−e11,e6,e15=−e13,e7,e9=e6,e7,e10=e11,e7,e11=−e10,e7,e12=−e15,e7,e13=2⁢e1−2⁢e3,e7,e15=e12,e8,e9=−e4,e8,e10=e15,e8,e11=e12,e8,e12=−e11,e8,e14=2⁢e2,e8,e15=−e10,e9,e10=e14,e9,e12=−e13,e9,e13=e12,e9,e14=−e10,e9,e15=2⁢e1,e10,e11=e7,e10,e13=e5,e10,e14=e9,e10,e15=e8,e11,e12=e8,e11,e13=−e4,e11,e14=e6,e12,e13=−e9,e12,e14=−e5,e12,e15=−e7,e13,e15=e6,e14,e15=−e4,Ui11,Ui22,Ui33,U12,U23,U34,U13,U24,U14,Ui12,Ui23,Ui34,Ui13,Ui24,Ui14,etai11,etai22,etai33,η12,η23,η34,η13,η24,η14,etai12,etai23,etai34,etai13,etai24,etai14
Initialize the Lie algebra su4.
DGsetup⁡LD
Lie algebra: su4
The command StandardRepresentation will produce the actual matrices defining su4. (This command only applies to Lie algebras constructed by the SimpleLieAlgebraData procedure.)
StandardRepresentation⁡su4
The Lie algebra elements corresponding to the complex diagonal matrices define a Cartan subalgebra.
CSA≔Ui11,Ui22,Ui33
CSA:=Ui11,Ui22,Ui33
We check this is indeed a Cartan subalgebra using the Query command
Query⁡CSA,CartanSubalgebra
true
Here is the root space corresponding to the root <I, I, -I>.
X≔RootSpace⁡I,I,2⁢I,CSA
X:=U34−I⁢Ui34
We check that the X is an eigenvector for the elements of the Cartan subalgebra.
B≔seq⁡LieBracket⁡h,X,h=CSA
B:=I⁢U34+Ui34,I⁢U34+Ui34,2⁢I⁢U34+2⁢Ui34
GetComponents⁡B,X
I,I,2⁢I
The column vector <I, I, I> is not a root
RootSpace⁡I,I,I,CSA
0⁢Ui11
Example 2.
Here is the full root space decomposition for the Lie algebra su4from Example 1.
RSD≔RootSpaceDecomposition⁡CSA
RSD:=table2⁢I,I,I=U14−I⁢Ui14,−I,I,0=U12+I⁢Ui12,I,2⁢I,I=U24−I⁢Ui24,I,0,−I=U13−I⁢Ui13,0,I,−I=U23−I⁢Ui23,−I,−I,−2⁢I=U34+I⁢Ui34,0,−I,I=U23+I⁢Ui23,−I,−2⁢I,−I=U24+I⁢Ui24,−2⁢I,−I,−I=U14+I⁢Ui14,−I,0,I=U13+I⁢Ui13,I,I,2⁢I=U34−I⁢Ui34,I,−I,0=U12−I⁢Ui12
The second calling sequence for RootSpace simply converts the given root vector to a list and extracts the corresponding root space from the root space decomposition table.
RootSpace⁡I,I,2⁢I,RSD
U34−I⁢Ui34
See Also
DifferentialGeometry
CartanSubalgebra
GetComponents
Query
RootSpaceDecomposition
SimpleLieAlgebraData
SimpleLieAlgebraProperties
StandardRepresentation
Download Help Document