LieAlgebras[RootToCartanSubalgebraElementH] - associate to each positive root of a simple Lie algebra a vector in the Cartan subalgebra
Calling Sequences
RootToCartanSubalgebraElementH(α , RSD)
Parameters
α - a vector, defining a positive (or negative) root of a simple Lie algebra
RSD - a table, defining the root space decomposition of a simple Lie algebra
Description
Examples
Let g be a simple Lie algebra, h a Cartan subalgebra, and 𝔤 = 𝔥 ⊕⨁α ∈ ΔRα the root space decomposition of g with respect to h. For each root α ∈Δ, there are vectors Xα ∈Rα , X−α ∈R−α and Hα∈ 𝔥 such that
[Hα , Xα] = 2 Xα, [Hα , X−α] = −2 X−α and Xα , X−α = Hα .
These conditions uniquely determine Hα. Note that the vectors Xα , X−α , Hα define the 3-dimensional Lie algebra sl2. The assignment α → Hα is used to calculate the Cartan matrix for the Lie algebra 𝔤.
The procedure RootToCartanSubalgebraElementH(α , RSD) returns the vector Hα.
with⁡DifferentialGeometry:with⁡LieAlgebras:
Example 1.
We consider the Lie algebra su3,3. This is the 24-dimensional real Lie algebra of 6×6 complex matrices A which are trace-free and skew-Hermitian with respect to the quadratic form Q=0I3I30 . We use the command SimpleLieAlgebraData to initialize this Lie algebra.
LD1≔SimpleLieAlgebraData⁡su(3,3),su33,labelformat=gl,labels=E,ω:
DGsetup⁡LD1
Lie algebra: su33
We use the command SimpleLieAlgebraProperties to obtain the Cartan subalgebra, the root space decomposition, and the simple roots.
P≔SimpleLieAlgebraProperties⁡su33:
The result P is a table. Here is the Cartan subalgebra for su3, 3.
CSA≔PCartanSubalgebra
CSA:=E11,E22,E33,Ei11,Ei22
Here is the root space decomposition for su3,3.
RSD≔eval⁡PRootSpaceDecomposition
RSD:=table1,0,1,−2⁢I,−I=E16+I⁢Ei16,1,1,0,I,−I=E15−I⁢Ei15,−1,0,1,−2⁢I,−I=E31+I⁢Ei31,1,−1,0,−I,I=E12−I⁢Ei12,0,0,−2,0,0=Ei63,0,−1,−1,I,2⁢I=E53−I⁢Ei53,0,−2,0,0,0=Ei52,−1,−1,0,I,−I=E42−I⁢Ei42,1,0,−1,2⁢I,I=E13+I⁢Ei13,0,1,−1,−I,−2⁢I=E23−I⁢Ei23,0,−1,−1,−I,−2⁢I=E53+I⁢Ei53,2,0,0,0,0=Ei14,0,−1,1,I,2⁢I=E32−I⁢Ei32,−1,0,1,2⁢I,I=E31−I⁢Ei31,−1,−1,0,−I,I=E42+I⁢Ei42,0,1,−1,I,2⁢I=E23+I⁢Ei23,0,1,1,−I,−2⁢I=E26+I⁢Ei26,1,0,−1,−2⁢I,−I=E13−I⁢Ei13,1,−1,0,I,−I=E12+I⁢Ei12,−1,0,−1,2⁢I,I=E43−I⁢Ei43,−1,0,−1,−2⁢I,−I=E43+I⁢Ei43,0,2,0,0,0=Ei25,1,0,1,2⁢I,I=E16−I⁢Ei16,−2,0,0,0,0=Ei41,−1,1,0,I,−I=E21−I⁢Ei21,0,−1,1,−I,−2⁢I=E32+I⁢Ei32,1,1,0,−I,I=E15+I⁢Ei15,0,0,2,0,0=Ei36,−1,1,0,−I,I=E21+I⁢Ei21,0,1,1,I,2⁢I=E26−I⁢Ei26
Here are the positive roots.
PR≔PPositiveRoots
Let us find Hα,where α is the first root
α≔PR1
H≔RootToCartanSubalgebraElementH⁡α,RSD
H:=−I2⁢Ei11+I2⁢Ei22+12⁢E11−12⁢E22
We check that H is in the Cartan subalgebra.
GetComponents⁡H,CSA
12,−12,0,−12⁢I,12⁢I
Here are the root spaces for α and −α .
X≔RootSpace⁡α,RSD
X:=E12+I⁢Ei12
Y≔RootSpace⁡−α,RSD
Y:=E21+I⁢Ei21
We check that H , X, Y defines a Lie subalgebra.
LieAlgebraData⁡H,X,Y
e1,e2=2⁢e2,e1,e3=−2⁢e3,e2,e3=4⁢e1
If we scale the vectors X and Y then the structure equations take the standard form for sl2.
LieAlgebraData⁡H,12⁢X,12⁢Y
e1,e2=2⁢e2,e1,e3=−2⁢e3,e2,e3=e1
Example 2.
We illustrate how to use RootToCartanSubalgebraElementH(α , RSD) to calculate the Cartan matrix for su3, 3. We first calculate the Hα for the simple roots α.
SR≔PSimpleRoots
Halpha≔map⁡RootToCartanSubalgebraElementH,SR,RSD
Halpha:=−I2⁢Ei11+I2⁢Ei22+12⁢E11−12⁢E22,−I2⁢Ei22+12⁢E22−12⁢E33,E33,I2⁢Ei22+12⁢E22−12⁢E33,I2⁢Ei11−I2⁢Ei22+12⁢E11−12⁢E22
Then we calculate the Killing form , restricted to subspace [H1, H2, H3, H4, H5].
B≔Killing⁡Halpha
The Cartan matrix is given by normalizing the entries of B.
C≔Matrix⁡5,5,i,j↦2⋅Bi,jBi,i
The Lie algebra su3,3 is a rank 5 simple Lie algebra of type "A". The matrix in is therefore correct.
CartanMatrix⁡A,5
See Also
DifferentialGeometry
CartanMatrix
Killing
LieAlgebraData
RootSpace
SimpleLieAlgebraData
SimpleLieAlgebraProperties
Download Help Document