RootToCartanSubalgebraElementH - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : RootToCartanSubalgebraElementH

LieAlgebras[RootToCartanSubalgebraElementH] - associate to each positive root of a simple Lie algebra a vector in the Cartan subalgebra

Calling Sequences

     RootToCartanSubalgebraElementH(α , RSD)

Parameters

     α     - a vector, defining a positive (or negative) root of a simple Lie algebra

     RSD   - a table, defining the root space decomposition of a simple Lie algebra

 

 

Description

Examples

Description

• 

 Let g be a simple Lie algebra, h a Cartan subalgebra, and 𝔤 = 𝔥 α  ΔRα the root space decomposition of g with respect to h. For each root α Δ, there are vectors Xα Rα , Xα Rα and Hα 𝔥  such that

 [Hα , Xα] = 2 Xα,  [Hα , Xα]  = 2 Xα  and Xα , Xα = Hα .

These conditions uniquely determine Hα.  Note that the vectors Xα , Xα , Hα define the 3-dimensional Lie algebra sl2. The assignment α  Hα  is used to calculate the Cartan matrix for the Lie algebra 𝔤.

• 

The procedure RootToCartanSubalgebraElementH(α , RSD) returns the vector Hα.

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We consider the Lie algebra su3,3. This is the 24-dimensional real Lie algebra of 6×6 complex matrices A which are trace-free and skew-Hermitian with respect to the quadratic form Q=0I3I30 . We use the command SimpleLieAlgebraData to initialize this Lie algebra.

 

LD1SimpleLieAlgebraDatasu(3,3),su33,labelformat=gl,labels=E,ω:

DGsetupLD1

Lie algebra: su33

(2.1)

 

We use the command SimpleLieAlgebraProperties to obtain the Cartan subalgebra, the root space decomposition, and the simple roots.

su33 > 

PSimpleLieAlgebraPropertiessu33:

 

The result P is a table. Here is the Cartan subalgebra for su3, 3.

su33 > 

CSAPCartanSubalgebra

CSA:=E11,E22,E33,Ei11,Ei22

(2.2)

 

Here is the root space decomposition for su3,3.

su33 > 

RSDevalPRootSpaceDecomposition

RSD:=table1,0,1,2I,I=E16+IEi16,1,1,0,I,I=E15IEi15,1,0,1,2I,I=E31+IEi31,1,1,0,I,I=E12IEi12,0,0,2,0,0=Ei63,0,1,1,I,2I=E53IEi53,0,2,0,0,0=Ei52,1,1,0,I,I=E42IEi42,1,0,1,2I,I=E13+IEi13,0,1,1,I,2I=E23IEi23,0,1,1,I,2I=E53+IEi53,2,0,0,0,0=Ei14,0,1,1,I,2I=E32IEi32,1,0,1,2I,I=E31IEi31,1,1,0,I,I=E42+IEi42,0,1,1,I,2I=E23+IEi23,0,1,1,I,2I=E26+IEi26,1,0,1,2I,I=E13IEi13,1,1,0,I,I=E12+IEi12,1,0,1,2I,I=E43IEi43,1,0,1,2I,I=E43+IEi43,0,2,0,0,0=Ei25,1,0,1,2I,I=E16IEi16,2,0,0,0,0=Ei41,1,1,0,I,I=E21IEi21,0,1,1,I,2I=E32+IEi32,1,1,0,I,I=E15+IEi15,0,0,2,0,0=Ei36,1,1,0,I,I=E21+IEi21,0,1,1,I,2I=E26IEi26

(2.3)

 

Here are the positive roots.

su33 > 

PRPPositiveRoots

 

Let us find Hα,where α is the first root  

su33 > 

αPR1

su33 > 

HRootToCartanSubalgebraElementHα,RSD

H:=I2Ei11+I2Ei22+12E1112E22

(2.4)

 

We check that H is in the Cartan subalgebra.

su33 > 

GetComponentsH,CSA

12,12,0,12I,12I

(2.5)

 

Here are the root spaces for α and α .

su33 > 

XRootSpaceα,RSD

X:=E12+IEi12

(2.6)
su33 > 

YRootSpaceα,RSD

Y:=E21+IEi21

(2.7)

 

We check that H , X, Y defines a Lie subalgebra.

su33 > 

LieAlgebraDataH,X,Y

e1,e2=2e2,e1,e3=2e3,e2,e3=4e1

(2.8)

 

If we scale the vectors X and Y then the structure equations take the standard form for sl2. 

su33 > 

LieAlgebraDataH,12X,12Y

e1,e2=2e2,e1,e3=2e3,e2,e3=e1

(2.9)

 

Example 2.

We illustrate how to use RootToCartanSubalgebraElementH(α , RSD) to calculate the Cartan matrix for su3, 3. We first calculate the Hα for the simple roots α.

su33 > 

SRPSimpleRoots

su33 > 

HalphamapRootToCartanSubalgebraElementH,SR,RSD

Halpha:=I2Ei11+I2Ei22+12E1112E22,I2Ei22+12E2212E33,E33,I2Ei22+12E2212E33,I2Ei11I2Ei22+12E1112E22

(2.10)

 

Then we calculate the Killing form , restricted to subspace [H1, H2, H3, H4, H5].

su33 > 

BKillingHalpha

 

The Cartan matrix is given by normalizing the entries of B.

su33 > 

CMatrix5,5,i,j2Bi,jBi,i

 

The Lie algebra su3,3 is a rank 5 simple Lie algebra of type "A". The matrix in  is therefore correct.

su33 > 

CartanMatrixA,5

 

See Also

DifferentialGeometry

CartanMatrix

Killing

LieAlgebraData

RootSpace

SimpleLieAlgebraData

SimpleLieAlgebraProperties