PullbackVector - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DifferentialGeometry

  

PullbackVector

  

find (if possible) a vector field whose pushforward by the Jacobian of a given transformation is a given vector field

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

PullbackVector(Phi, Y, S, freevar)

Parameters

Phi

-

a transformation from a manifold M to a manifold N

Y

-

a vector field on N

S

-

(optional) a list of independent vector fields on M; the default is the standard local frame for the tangent bundle of M

freevar

-

(optional)  freevariable = k, where k is an unassigned Maple name

Description

• 

This procedures finds all vector fields X in the span of S such that Phi_*(X) = Y, where Phi_* is the Jacobian of Phi. If Phi is a local immersion, then Phi_* is injective and the vector X, if it exists, is unique.  If  Phi is not a local immersion, then the optional argument freevariable = k can be used to specify the name of the indexed variable that will be used to parameterize the possibilities for X.

• 

The kernel of  Phi_* can be computed by taking Y to be the zero vector.

• 

If no vector field X exists such that Phi_*(X) = Y, then NULL is returned.

• 

This command is part of the DifferentialGeometry package, and so can be used in the form PullbackVector(...) only after executing the command with(DifferentialGeometry).  It can always be used in the long form DifferentialGeometry:-PullbackVector.

Examples

withDifferentialGeometry:

 

Example 1.

Suppose Phi: M -> N is an imbedding and Y is a vector field on N which is tangent to the image of M.  Then there exists a unique vector field X on M such that Phi_*(X) = Y; and X can be found using the PullbackVector command. For example, the vectors Y1 and Y2  defined below are both tangent to the unit 3-sphere x^2 + y^2 + z^2 + w^2 = 1 and therefore can be pulled-back by the stereographic projection map Phi1 to the 3-dimensional Euclidean space E3 with coordinates [r, s, t].

DGsetupx,y,z,w,E4:DGsetupr,s,t,E3:

Φ1TransformationE3,E4,x=2r1+r2+s2+t2,y=2s1+r2+s2+t2,z=2t1+r2+s2+t2,w=1r2+s2+t21+r2+s2+t2

Φ1x=2rr2+s2+t2+1,y=2sr2+s2+t2+1,z=2tr2+s2+t2+1,w=r2s2t2+1r2+s2+t2+1

(1)

Y1evalDGyD_x+xD_y+wD_zzD_w

Y1yD_x+xD_y+wD_zzD_w

(2)

Y2evalDGzD_xwD_y+xD_z+yD_w

Y2zD_xwD_y+xD_z+yD_w

(3)

X1PullbackVectorΦ1,Y1

X1rtsD_r+st+rD_sr22+s22t2212D_t

(4)

X2PullbackVectorΦ1,Y2

X2rs+tD_r+r22s22+t2212D_s+st+rD_t

(5)

We remark that since the vector fields X1 and X2 are uniquely determined, the Lie bracket relations are preserved.

Y3LieBracketY1,Y2

Y32wD_x+2zD_y2yD_z+2xD_w

(6)

X3PullbackVectorΦ1,Y3

X3r2s2t2+1D_r2rs2tD_s2rt+2sD_t

(7)

X3&minusLieBracketX1,X2

0D_r

(8)

 

Example 2.

In the following example the map Phi2 is not a local immersion. We can use the freevariable option to specify the name of the indexed variable that will be used to parameterize the vectors X2 such that Phi2_*(X2) = Y2.

DGsetupx,y,z,w,E4:DGsetupt,u,v,E2:

Φ2TransformationE4,E2,u=x,v=z,t=1

Φ2t=1,u=x,v=z

(9)

Y4D_u

Y4D_u

(10)

X4PullbackVectorΦ2,Y4,freevariable=s

X4D_x+s1D_y+s2D_w

(11)

X5PullbackVectorΦ2,D_t,freevariable=s

X5

(12)

 

We can use the optional third argument to force the vector to belong to a given subspace.

X6PullbackVectorΦ2,Y4,D_x,D_y,freevariable=s

X6D_x+s1D_y

(13)

X7PullbackVectorΦ2,Y4,D_x,freevariable=s

X7D_x

(14)

See Also

DifferentialGeometry

Pushforward

Transformation