Tensor[AdaptedNullTetrad] - find a null tetrad which transforms the Newman-Penrose Weyl scalars to a standard form
Calling Sequences
AdaptedNullTetrad(NT, PT, options )
AdaptedNullTetrad(NT, PT, W, options )
AdaptedNullTetrad(NT, PT, NP , options )
Parameters
NT - a null tetrad for the spacetime metric g
PT - the Petrov type of g
W - (optional) the Weyl tensor of g
NP - (optional) the Newman-Penrose Weyl scalars
options - one or more of the keyword arguments method and output
Description
Examples
The Newman-Penrose Weyl scalars are a set of 5 complex scalars, labeled Ψ0, Ψ1, Ψ2, Ψ3, Ψ4 , and defined by certain components of the Weyl tensor with respect to a given null tetrad in a four dimensional spacetime of signature [1, -1, -1, -1]. Under local Lorentz transformations, the Newman-Penrose Weyl scalars transform among themselves in a natural way. Depending upon the Petrov type of the spacetime it is possible to transform the Newman-Penrose Weyl scalars to one of following normal forms. Below, η and χ are complex scalars. See NPCurvatureScalars, NullTetradTransformation.
Type I. Ψ0= 32 η χ , Ψ1 = 0, Ψ2=12η2 − χ, Ψ3 =0, Ψ4 = 32η χ .
Type II. Ψ0= 0, Ψ1= 0, Ψ2 =η, Ψ3=0,Ψ4 = 6 η.
Type III. Ψ0 = 0, Ψ1=0, Ψ2 =0, Ψ3=1, Ψ4 = 0.
Type D. Ψ0= 0, Ψ1 = 0, Ψ2 =η, Ψ3 = 0, Ψ4= 0.
Type N. Ψ0= 0, Ψ1 =0, Ψ2 = 0, Ψ3 = 0, Ψ4 = 1.
Type O. Ψ0= 0, Ψ1 = 0, Ψ2 =0, Ψ3 =0, Ψ4 = 0.
See Penrose and Rindle Vol. 2, Section 8.3.
Null tetrads for which the Newman-Penrose Weyl scalars are in the above normal form are called adapted null tetrads. Calculations are often simplified by using an adapted null tetrad.
The command AdaptedNullTetrad returns a null tetrad which will put the Newman-Penrose Weyl scalars in the above normal form.
The procedure AdaptedNullTetrad first calculates the Weyl spinor and calls the procedure AdaptedSpinorDyad to find a spinor dyad which transforms the Weyl spinor to normal form. The adapted null tetrad is then constructed from the spinor dyad.
The command AdaptedNullTetrad is part of the DifferentialGeometry:-Tensor package. It can be used in the form AdaptedNullTetrad(...) only after executing the commands with(DifferentialGeometry) and with(Tensor), but can always be used by executing DifferentialGeometry:-Tensor:-AdaptedNullTetrad(...).
with⁡DifferentialGeometry:with⁡Tensor:
Set the global environment variable _EnvExplicit to true to insure that the adapted null tetrads are free of RootOf expressions.
_EnvExplicit≔true:
Example 1. Type I
We calculate an adapted null tetrad for a type I spacetime. First define the coordinates to be used and then define the metric.
DGsetup⁡t,x,y,z,M
frame name: M
g1≔evalDG⁡dt&tdt−t2⁢dx&tdx−x2⁢dy&tdy−dz&tdz
g1:=dt⁢dt−t2⁢dx⁢dx−x2⁢dy⁢dy−dz⁢dz
Here is an initial null tetrad.
NT1≔evalDG⁡D_t+D_z,12⁢D_t−D_z,12⁢sqrt⁡2⁢D_xt+12⁢I⁢sqrt⁡2⁢D_yx,12⁢sqrt⁡2⁢D_xt−12⁢I⁢sqrt⁡2⁢D_yx
NT1:=D_t+D_z,12⁢D_t−12⁢D_z,22⁢t⁢D_x+I2⁢2x⁢D_y,22⁢t⁢D_x−I2⁢2x⁢D_y
We check that this is indeed a null tetrad for the given metric using GRQuery.
GRQuery⁡NT1,g1,NullTetrad
true
Compute the Newman-Penrose coefficients and check that the Petrov type is I. The coefficients are not in normal form for type I (for example, Ψ1 ≠ 0), so NT1 is not an adapted null tetrad.
NP1≔NPCurvatureScalars⁡NT1,output=WeylScalars
NP1:=tablePsi1=−14⁢2x⁢t2,Psi0=0,Psi2=0,Psi4=0,Psi3=−18⁢2x⁢t2
PetrovType⁡NP1
I
Calculate an adapted null tetrad and simplify.
newNT1≔combine⁡AdaptedNullTetrad⁡NT1,I,symbolic
newNT1:=22⁢D_t−22⁢t⁢D_x,22⁢D_t+22⁢t⁢D_x,12+I2x⁢D_y+12−I2⁢D_z,12−I2x⁢D_y+12+I2⁢D_z
Calculate the Newman-Penrose coefficients for the new null tetrad. We obtain the correct normal form (with χ = 2)since Ψ1= Ψ3 = 0 and Ψ0= Ψ4.
newNP1≔NPCurvatureScalars⁡newNT1,output=WeylScalars
newNP1:=tablePsi1=0,Psi0=−12⁢It2⁢x,Psi2=0,Psi4=−12⁢It2⁢x,Psi3=0
Example 2. Type II
We calculate an adapted null tetrad for a type II spacetime. First define the coordinates to be used and then define the metric.
DGsetup⁡r,u,x,y,M
g2≔evalDG⁡−2⁢r22⁢x3⁢dx&tdx+dy&tdy+2⁢du&sdr−3⁢2⁢x+2⁢mr⁢du&tdu
g2:=dr⁢du+du⁢dr−2⁢3⁢x⁢r+mr⁢du⁢du−r24⁢x3⁢dx⁢dx−r24⁢x3⁢dy⁢dy
NT2≔evalDG⁡D_r,3⁢x⁢r+m⁢D_rr+D_u,I⁢sqrt⁡2⁢x32⁢D_xr+sqrt⁡2⁢x32⁢D_yr,−I⁢sqrt⁡2⁢x32⁢D_xr+sqrt⁡2⁢x32⁢D_yr
NT2:=D_r,3⁢x⁢r+mr⁢D_r+D_u,I⁢2⁢x32r⁢D_x+2⁢x32r⁢D_y,−I⁢2⁢x32r⁢D_x+2⁢x32r⁢D_y
We check that this is indeed a null tetrad for the given metric.
GRQuery⁡NT2,g2,NullTetrad
Compute the Newman-Penrose coefficients and check that the Petrov type is II. The coefficients are not in normal form for type II (for example, Ψ3 ≠ 0), so NT2 is not an adapted null tetrad.
NP2≔NPCurvatureScalars⁡NT2,output=WeylScalars
NP2:=tablePsi1=0,Psi0=0,Psi2=−mr3,Psi4=18⁢x2r2,Psi3=−3⁢I⁢2⁢x3/2r2
PetrovType⁡NP2
II
Calculate an adapted null tetrad. We use the third calling sequence so that the Weyl tensor, or equivalently, the Newman-Penrose Weyl scalars need not be computed. Moreover, all computations are then algebraic and we can use Maple's assuming feature to simplify all intermediate calculations.
newNT2≔AdaptedNullTetrad⁡NT2,II,NP2assuming0<x,0<y,0<r,3⁢m−2⁢x⁢r<0,m<0
newNT2:=−r⁢2⁢x⁢r−3⁢m⁢xm⁢D_r,−2⁢r3⁢x3+3⁢m2⁢r⁢x+m3r32⁢2⁢x⁢r−3⁢m⁢x⁢m⁢D_r−mr⁢2⁢x⁢r−3⁢m⁢x⁢D_u−4⁢x2r⁢2⁢x⁢r−3⁢m⁢D_x,−I⁢2⁢x32⁢rm⁢D_r−I⁢2⁢x32r⁢D_x−2⁢x32r⁢D_y,I⁢2⁢x32⁢rm⁢D_r+I⁢2⁢x32r⁢D_x−2⁢x32r⁢D_y
Calculate the Newman-Penrose coefficients for the new null tetrad. We obtain the correct normal form (with η = −mr3 ) since Ψ0= Ψ1 = Ψ3 = 0 and Ψ2 = η, Ψ4 = 6 η.
newNP2≔NPCurvatureScalars⁡newNT2,output=WeylScalars
newNP2:=tablePsi1=0,Psi0=0,Psi2=−mr3,Psi4=−6⁢mr3,Psi3=0
Example 3. Type III
We calculate an adapted null tetrad for a type III spacetime. First define the coordinates to be used and then define the metric.
g3≔evalDG⁡−r2x3⁢dx&tdx+dy&tdy+2⁢du&sdr−32⁢x⁢du&tdu
g3:=dr⁢du+du⁢dr−3⁢x2⁢du⁢du−r2x3⁢dx⁢dx−r2x3⁢dy⁢dy
NT3≔evalDG⁡38⁢x+12⁢D_r+12⁢D_u+12⁢sqrt⁡2⁢x32⁢D_yr,38⁢x+12⁢D_r+12⁢D_u−12⁢sqrt⁡2⁢x32⁢D_yr,−38⁢x+12⁢D_r−12⁢D_u+12⁢I⁢sqrt⁡2⁢x32⁢D_xr,−38⁢x+12⁢D_r−12⁢D_u−12⁢I⁢sqrt⁡2⁢x32⁢D_xr
NT3:=3⁢x8+12⁢D_r+12⁢D_u+2⁢x322⁢r⁢D_y,3⁢x8+12⁢D_r+12⁢D_u−2⁢x322⁢r⁢D_y,−3⁢x8−12⁢D_r−12⁢D_u+I2⁢2⁢x32r⁢D_x,−3⁢x8−12⁢D_r−12⁢D_u−I2⁢2⁢x32r⁢D_x
GRQuery⁡NT3,g3,NullTetrad
Compute the Newman-Penrose coefficients and check that the Petrov type is III. The coefficients are not in normal form for type III (for example, Ψ1 ≠ 0), so NT3 is not an adapted null tetrad.
NP3≔NPCurvatureScalars⁡NT3,output=WeylScalars
NP3:=tablePsi1=−332⁢2⁢I⁢2+3⁢x⁢x3/2r2,Psi0=332⁢x⁢4⁢I⁢2⁢x+3⁢xr2,Psi2=932⁢x2r2,Psi4=−332⁢x⁢4⁢I⁢2⁢x−3⁢xr2,Psi3=332⁢2⁢I⁢2−3⁢x⁢x3/2r2
PetrovType⁡NP3
III
Calculate an adapted null tetrad.
newNT3≔AdaptedNullTetrad⁡NT3,III,NP3assuming0<x
newNT3:=3⁢2⁢x328⁢r2⁢D_r,11⁢2⁢r28⁢x⁢D_r+4⁢2⁢r23⁢x32⁢D_u+r⁢x⁢2⁢D_x,3⁢2⁢x8⁢D_r+2⁢x322⁢r⁢D_x+I2⁢2⁢x32r⁢D_y,3⁢2⁢x8⁢D_r+2⁢x322⁢r⁢D_x−I2⁢2⁢x32r⁢D_y
Calculate the Newman-Penrose coefficients for the new null tetrad. We obtain the correct normal form since Ψ0 = Ψ1= Ψ2 = Ψ4 =0 and Ψ3= 1 .
NPCurvatureScalars⁡newNT3,output=WeylScalars
tablePsi1=0,Psi0=0,Psi2=0,Psi4=0,Psi3=1
Example 4. Type D
We calculate an adapted null tetrad for a type D spacetime. First define the coordinates to be used and then define the metric.
g4≔evalDG⁡−dx&tdx−dy&tdy−12⁢exp⁡2⁢x⁢dz&tdz+dt+exp⁡x⁢dz&sdt+exp⁡x⁢dz
g4:=dt⁢dt+ⅇx⁢dt⁢dz−dx⁢dx−dy⁢dy+ⅇx⁢dz⁢dt+ⅇ2⁢x2⁢dz⁢dz
NT4≔evalDG⁡−12⁢sqrt⁡2⁢sqrt⁡2−1⁢D_t+exp⁡−x⁢D_z,12⁢sqrt⁡2⁢1+sqrt⁡2⁢D_t−exp⁡−x⁢D_z,12⁢sqrt⁡2⁢D_x+12⁢I⁢sqrt⁡2⁢D_y,12⁢sqrt⁡2⁢D_x−12⁢I⁢sqrt⁡2⁢D_y
NT4:=−2⁢2−12⁢D_t+ⅇ−x⁢D_z,2⁢2+12⁢D_t−ⅇ−x⁢D_z,22⁢D_x+I2⁢2⁢D_y,22⁢D_x−I2⁢2⁢D_y
GRQuery⁡NT4,g4,NullTetrad
Compute the Newman-Penrose coefficients and check that the Petrov type is D. The coefficients are not in normal form for type D (for example, Ψ0 ≠ 0), so NT4 is not an adapted null tetrad.
NP4≔NPCurvatureScalars⁡NT4,output=WeylScalars
NP4:=tablePsi1=0,Psi0=14,Psi2=112,Psi4=14,Psi3=0
PetrovType⁡NP4
D
newNT4≔AdaptedNullTetrad⁡NT4,D
newNT4:=2⁢D_t−2⁢D_y,24⁢D_t+24⁢D_y,−I⁢D_t+22⁢D_x+I⁢ⅇ−x⁢D_z,I⁢D_t+22⁢D_x−I⁢ⅇ−x⁢D_z
Calculate the Newman-Penrose coefficients for the new null tetrad. We obtain the correct normal form since Ψ0= Ψ1 = Ψ3 =Ψ4 = 0.
newNP≔NPCurvatureScalars⁡newNT4,output=WeylScalars
newNP:=tablePsi1=0,Psi0=0,Psi2=−16,Psi4=0,Psi3=0
Example 5. Type N
We calculate an adapted null tetrad for a type N spacetime. First define the coordinates to be used and then define the metric.
DGsetup⁡u,x,y,z,M
g5≔evalDG⁡exp⁡−2⁢z⁢du&tdx+exp⁡−2⁢z⁢dx&tdu+exp⁡z⁢dx&tdx−exp⁡−2⁢z⁢dy&tdy−dz&tdz
g5:=ⅇ−2⁢z⁢du⁢dx+ⅇ−2⁢z⁢dx⁢du+ⅇz⁢dx⁢dx−ⅇ−2⁢z⁢dy⁢dy−dz⁢dz
Here is the initial null tetrad.
NT5≔evalDG⁡−14⁢exp⁡3⁢z−2⁢exp⁡z⁢D_u+12⁢exp⁡z⁢D_x+12⁢sqrt⁡2⁢D_z,−14⁢exp⁡3⁢z−2⁢exp⁡z⁢D_u+12⁢exp⁡z⁢D_x−12⁢sqrt⁡2⁢D_z,14⁢exp⁡3⁢z+2⁢exp⁡z⁢D_u−12⁢exp⁡z⁢D_x+12⁢I⁢sqrt⁡2⁢exp⁡z⁢D_y,14⁢exp⁡3⁢z+2⁢exp⁡z⁢D_u−12⁢exp⁡z⁢D_x−12⁢I⁢sqrt⁡2⁢exp⁡z⁢D_y
NT5:=−ⅇ3⁢z−2⁢ⅇz4⁢D_u+ⅇz2⁢D_x+22⁢D_z,−ⅇ3⁢z−2⁢ⅇz4⁢D_u+ⅇz2⁢D_x−22⁢D_z,ⅇ3⁢z+2⁢ⅇz4⁢D_u−ⅇz2⁢D_x+I2⁢2⁢ⅇz⁢D_y,ⅇ3⁢z+2⁢ⅇz4⁢D_u−ⅇz2⁢D_x−I2⁢2⁢ⅇz⁢D_y
GRQuery⁡NT5,g5,NullTetrad
Compute the Newman-Penrose coefficients and check that the Petrov type is N. The coefficients are not in normal form for type N (for example, Ψ1 ≠ 0), so NT5 is not an adapted null tetrad.
NP5≔NPCurvatureScalars⁡NT5,output=WeylScalars
NP5:=tablePsi1=−38⁢ⅇ3⁢z,Psi0=38⁢ⅇ3⁢z,Psi2=38⁢ⅇ3⁢z,Psi4=38⁢ⅇ3⁢z,Psi3=−38⁢ⅇ3⁢z
PetrovType⁡NP5
N
newNT5≔AdaptedNullTetrad⁡NT5,N,NP5assuming0<z
newNT5:=ⅇ5⁢z2⁢62⁢D_u,−6⁢ⅇ3⁢z−2⁢ⅇ−z26⁢D_u+ⅇ−z2⁢63⁢D_x+2⁢3⁢ⅇ−3⁢z23⁢D_z,−ⅇz⁢D_u+I2⁢2⁢ⅇz⁢D_y−22⁢D_z,−ⅇz⁢D_u−I2⁢2⁢ⅇz⁢D_y−22⁢D_z
Calculate the Newman-Penrose coefficients for the new null tetrad. We obtain the correct normal form since Ψ0= Ψ1 = Ψ2 =Ψ3 = 0 and Ψ4 =1.
newNP5≔NPCurvatureScalars⁡newNT5,output=WeylScalars
newNP5:=tablePsi1=0,Psi0=0,Psi2=0,Psi4=1,Psi3=0
See Also
DifferentialGeometry
Tensor
AdaptedSpinorDyad
FactorWeylSpinor
NPCurvatureScalars
NullVector
PetrovType
WeylSpinor
Download Help Document