Tensor[BachTensor] - calculate the Bach tensor of a metric
Calling Sequences
BachTensor(g)
BachTensor(g, Γ)
BachTensor(g, G, R, C)
Parameters
g - a metric tensor on the tangent bundle of a manifold
Γ - (optional) the Christoffel connection of g
R - (optional) the curvature tensor of g
C - (optional) the Cotton tensor of g
Description
Examples
Let gab be a metric (of any signature) on the tangent bundle of a manifold M of dimensionn>2. The metric determines: the covariant derivative ∇a, the Schouten tensor Pab, the Weyl tensor Wabcd and the Cotton tensor Cabc. The Bach tensor is defined as
Bab= ∇cCacb+PdcWdacb.
he Bach tensor is trace-free: gabBab=0. See A. Grover and P. Nurowski, J. Geom. Phys. 56, 450-484 (2006) for additional properties, applications and references.
The first calling sequence computes Bab directly from the given metric using the formula above. The second calling sequence computes Bab from the given metric and Christoffel connection. The third calling sequence computes Bab directly from the given metric Christoffel connection, curvature and Cotton tensors.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BachTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-BachTensor.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
Calculate the Bach tensor of a metric and check that it is trace-free.
DGsetup⁡u,v,x,y,M
frame name: M
g≔evalDG⁡−du&sdv+dx&tdx+dy&tdy+exp⁡x⁢y⁢du&tdu
g:=ⅇx⁢y⁢du⁢du−12⁢du⁢dv−12⁢dv⁢du+dx⁢dx+dy⁢dy
B≔BachTensor⁡g
B:=−ⅇx⁢y⁢x4+2⁢x2⁢y2+y4+8⁢x⁢y+44⁢du⁢du
TensorInnerProduct⁡g,g,B
0
Example 2.
Calculate the Bach tensor of a metric and Christoffel connection. We use the metric from the previous example.
Gamma≔Christoffel⁡g
Γ:=−y⁢ⅇx⁢y⁢D_v⁢du⁢dx−x⁢ⅇx⁢y⁢D_v⁢du⁢dy−y⁢ⅇx⁢y⁢D_v⁢dx⁢du−x⁢ⅇx⁢y⁢D_v⁢dy⁢du−y⁢ⅇx⁢y2⁢D_x⁢du⁢du−x⁢ⅇx⁢y2⁢D_y⁢du⁢du
BachTensor⁡g,Gamma
−ⅇx⁢y⁢x4+2⁢x2⁢y2+y4+8⁢x⁢y+44⁢du⁢du
Example 3.
Calculate the Bach tensor of a metric Christoffel connection, curvature tensor and Cotton tensor. We use the metric and connection from the previous examples.
R≔CurvatureTensor⁡g
R:=y2⁢ⅇx⁢y⁢D_v⁢dx⁢du⁢dx+ⅇx⁢y⁢x⁢y+1⁢D_v⁢dx⁢du⁢dy−y2⁢ⅇx⁢y⁢D_v⁢dx⁢dx⁢du−ⅇx⁢y⁢x⁢y+1⁢D_v⁢dx⁢dy⁢du+ⅇx⁢y⁢x⁢y+1⁢D_v⁢dy⁢du⁢dx+x2⁢ⅇx⁢y⁢D_v⁢dy⁢du⁢dy−ⅇx⁢y⁢x⁢y+1⁢D_v⁢dy⁢dx⁢du−x2⁢ⅇx⁢y⁢D_v⁢dy⁢dy⁢du+y2⁢ⅇx⁢y2⁢D_x⁢du⁢du⁢dx+ⅇx⁢y⁢x⁢y+12⁢D_x⁢du⁢du⁢dy−y2⁢ⅇx⁢y2⁢D_x⁢du⁢dx⁢du−ⅇx⁢y⁢x⁢y+12⁢D_x⁢du⁢dy⁢du+ⅇx⁢y⁢x⁢y+12⁢D_y⁢du⁢du⁢dx+x2⁢ⅇx⁢y2⁢D_y⁢du⁢du⁢dy−ⅇx⁢y⁢x⁢y+12⁢D_y⁢du⁢dx⁢du−x2⁢ⅇx⁢y2⁢D_y⁢du⁢dy⁢du
C≔CottonTensor⁡g
C:=ⅇx⁢y⁢x2⁢y+y3+2⁢x4⁢du⁢du⁢dx+ⅇx⁢y⁢x3+x⁢y2+2⁢y4⁢du⁢du⁢dy−ⅇx⁢y⁢x2⁢y+y3+2⁢x4⁢du⁢dx⁢du−ⅇx⁢y⁢x3+x⁢y2+2⁢y4⁢du⁢dy⁢du
BachTensor⁡g,Gamma,R,C
In four dimensions, the Bach tensor is an obstruction to a metric being conformal to an Einstein metric. Here we check that the Bach tensor vanishes on a metric conformal to a Ricci-flat metric in four dimensions.
g0≔evalDG⁡−du&sdv+dx&tdx+dy&tdy+x⁢y⁢du&tdu
g0:=x⁢y⁢du⁢du−12⁢du⁢dv−12⁢dv⁢du+dx⁢dx+dy⁢dy
RicciTensor⁡g0
0⁢du⁢du
g1≔evalDG⁡exp⁡f⁡u,v,x,y⁢g0
g1:=ⅇf⁡u,v,x,y⁢x⁢y⁢du⁢du−ⅇf⁡u,v,x,y2⁢du⁢dv−ⅇf⁡u,v,x,y2⁢dv⁢du+ⅇf⁡u,v,x,y⁢dx⁢dx+ⅇf⁡u,v,x,y⁢dy⁢dy
BachTensor⁡g1
See Also
DifferentialGeometry
CurvatureTensor
RicciTensor
RicciScalar
SchoutenTensor
WeylTensor
ProjectiveCurvature
Download Help Document