Tensor[BivectorSolderForm] - construct the bivector solder form defined by a solder form
Calling Sequences
BivectorSolderForm(sigma, spinorType, indexlist)
Parameters
sigma - a solder form
spinorType - a string, either "spinor" or "barspinor"
indexlist - (optional) the keyword argument indexlist = ind, where ind is a list of 4 index types "con" or "cov"
Description
Examples
See Also
A bivector is a skew-symmetric, rank 2 contravariant tensor. On a 4-dimensional manifold with solder form σ there is a 1-1 correspondence between bivectors and symmetric rank 2 spinors. This correspondence is explicitly furnished by the bivector solder forms S and S‾ which are defined in terms of the solder form s by
SijAB=σiAC 'σj C 'B−σjBC 'σi C 'A
and
S‾ijA'B'=σiCA 'σjC B'−σjCB 'σiC A'.
The tensor indices of the bivector solder forms are raised and lowered with the metric g defined by σ
The keyword argument indexlist = ind allows the user to specify the index structure for the bivector solder form. For example, with indexlist = ["con", "con", "con", "con"], the contravariant form S ijAB is returned.
The bivector soldering forms satisfy a large number of identities, some of which are illustrated in Examples 2 - 4.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BivectorSolderForm(...) only after executing the commands with(DifferentialGeometry; with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-BivectorSolderForm.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a vector bundle over M with base coordinates t, x,y,z and fiber coordinates z1, z2, w1,w2.
DGsetup⁡t,x,y,z,z1,z2,w1,w2,M
frame name: M
Define a metric g on M. Note that our spinor conventions have the metric with signature +1, −1, −1, −1.
g≔evalDG⁡dt&tdt−dx&tdx−dy&tdy−dz&tdz
g:=dt⁢dt−dx⁢dx−dy⁢dy−dz⁢dz
Define an orthonormal frame on M with respect to the metric g.
F≔D_t,D_x,D_y,D_z
F:=D_t,D_x,D_y,D_z
Calculate the solder form sigma from the frame F.
σ≔SolderForm⁡F
σ:=22⁢dt⁢D_z1⁢D_w1+22⁢dt⁢D_z2⁢D_w2+22⁢dx⁢D_z1⁢D_w2+22⁢dx⁢D_z2⁢D_w1−I2⁢2⁢dy⁢D_z1⁢D_w2+I2⁢2⁢dy⁢D_z2⁢D_w1+22⁢dz⁢D_z1⁢D_w1−22⁢dz⁢D_z2⁢D_w2
Calculate the bivector solder form S from sigma.
S≔BivectorSolderForm⁡σ,spinor
S:=dt⁢dx⁢D_z1⁢D_z1−dt⁢dx⁢D_z2⁢D_z2−I⁢dt⁢dy⁢D_z1⁢D_z1−I⁢dt⁢dy⁢D_z2⁢D_z2−dt⁢dz⁢D_z1⁢D_z2−dt⁢dz⁢D_z2⁢D_z1−dx⁢dt⁢D_z1⁢D_z1+dx⁢dt⁢D_z2⁢D_z2−I⁢dx⁢dy⁢D_z1⁢D_z2−I⁢dx⁢dy⁢D_z2⁢D_z1−dx⁢dz⁢D_z1⁢D_z1−dx⁢dz⁢D_z2⁢D_z2+I⁢dy⁢dt⁢D_z1⁢D_z1+I⁢dy⁢dt⁢D_z2⁢D_z2+I⁢dy⁢dx⁢D_z1⁢D_z2+I⁢dy⁢dx⁢D_z2⁢D_z1+I⁢dy⁢dz⁢D_z1⁢D_z1−I⁢dy⁢dz⁢D_z2⁢D_z2+dz⁢dt⁢D_z1⁢D_z2+dz⁢dt⁢D_z2⁢D_z1+dz⁢dx⁢D_z1⁢D_z1+dz⁢dx⁢D_z2⁢D_z2−I⁢dz⁢dy⁢D_z1⁢D_z1+I⁢dz⁢dy⁢D_z2⁢D_z2
Example 2.
The contraction of two bivector solder forms on their tensor indices can be expressed in terms of the Kronecker delta spinor.
SijABSCDij=4 δCAδDB+δCBδDA.
We check this identity using the solder form from Example 1. First we calculate the left-hand side.
S1≔BivectorSolderForm⁡σ,spinor
S1:=dt⁢dx⁢D_z1⁢D_z1−dt⁢dx⁢D_z2⁢D_z2−I⁢dt⁢dy⁢D_z1⁢D_z1−I⁢dt⁢dy⁢D_z2⁢D_z2−dt⁢dz⁢D_z1⁢D_z2−dt⁢dz⁢D_z2⁢D_z1−dx⁢dt⁢D_z1⁢D_z1+dx⁢dt⁢D_z2⁢D_z2−I⁢dx⁢dy⁢D_z1⁢D_z2−I⁢dx⁢dy⁢D_z2⁢D_z1−dx⁢dz⁢D_z1⁢D_z1−dx⁢dz⁢D_z2⁢D_z2+I⁢dy⁢dt⁢D_z1⁢D_z1+I⁢dy⁢dt⁢D_z2⁢D_z2+I⁢dy⁢dx⁢D_z1⁢D_z2+I⁢dy⁢dx⁢D_z2⁢D_z1+I⁢dy⁢dz⁢D_z1⁢D_z1−I⁢dy⁢dz⁢D_z2⁢D_z2+dz⁢dt⁢D_z1⁢D_z2+dz⁢dt⁢D_z2⁢D_z1+dz⁢dx⁢D_z1⁢D_z1+dz⁢dx⁢D_z2⁢D_z2−I⁢dz⁢dy⁢D_z1⁢D_z1+I⁢dz⁢dy⁢D_z2⁢D_z2
S2≔BivectorSolderForm⁡σ,spinor,indextype=con,con,cov,cov
S2:=D_t⁢D_x⁢dz1⁢dz1−D_t⁢D_x⁢dz2⁢dz2+I⁢D_t⁢D_y⁢dz1⁢dz1+I⁢D_t⁢D_y⁢dz2⁢dz2−D_t⁢D_z⁢dz1⁢dz2−D_t⁢D_z⁢dz2⁢dz1−D_x⁢D_t⁢dz1⁢dz1+D_x⁢D_t⁢dz2⁢dz2+I⁢D_x⁢D_y⁢dz1⁢dz2+I⁢D_x⁢D_y⁢dz2⁢dz1−D_x⁢D_z⁢dz1⁢dz1−D_x⁢D_z⁢dz2⁢dz2−I⁢D_y⁢D_t⁢dz1⁢dz1−I⁢D_y⁢D_t⁢dz2⁢dz2−I⁢D_y⁢D_x⁢dz1⁢dz2−I⁢D_y⁢D_x⁢dz2⁢dz1−I⁢D_y⁢D_z⁢dz1⁢dz1+I⁢D_y⁢D_z⁢dz2⁢dz2+D_z⁢D_t⁢dz1⁢dz2+D_z⁢D_t⁢dz2⁢dz1+D_z⁢D_x⁢dz1⁢dz1+D_z⁢D_x⁢dz2⁢dz2+I⁢D_z⁢D_y⁢dz1⁢dz1−I⁢D_z⁢D_y⁢dz2⁢dz2
LHS≔ContractIndices⁡S1,S2,1,1,2,2
LHS:=8⁢D_z1⁢D_z1⁢dz1⁢dz1+4⁢D_z1⁢D_z2⁢dz1⁢dz2+4⁢D_z1⁢D_z2⁢dz2⁢dz1+4⁢D_z2⁢D_z1⁢dz1⁢dz2+4⁢D_z2⁢D_z1⁢dz2⁢dz1+8⁢D_z2⁢D_z2⁢dz2⁢dz2
To calculate the right-hand side we construct the symmetrized tensor product of 2 Kronecker delta spinors and multiply by 8 (because SymmetrizeIndices will include a factor of 1/2).
δ≔KroneckerDeltaSpinor⁡spinor
δ:=D_z1⁢dz1+D_z2⁢dz2
E≔RearrangeIndices⁡δ&tδ,2,3
E:=D_z1⁢D_z1⁢dz1⁢dz1+D_z1⁢D_z2⁢dz1⁢dz2+D_z2⁢D_z1⁢dz2⁢dz1+D_z2⁢D_z2⁢dz2⁢dz2
RHS≔8&multSymmetrizeIndices⁡E,1,2,Symmetric
RHS:=8⁢D_z1⁢D_z1⁢dz1⁢dz1+4⁢D_z1⁢D_z2⁢dz1⁢dz2+4⁢D_z1⁢D_z2⁢dz2⁢dz1+4⁢D_z2⁢D_z1⁢dz1⁢dz2+4⁢D_z2⁢D_z1⁢dz2⁢dz1+8⁢D_z2⁢D_z2⁢dz2⁢dz2
Check that the LHS and RHS are the same.
LHS&minusRHS
0⁢D_z1⁢D_z1⁢dz1⁢dz1
Example 3.
The contraction of two bivector soldering forms on their tensor indices can be expressed in terms of the metric and the permutation tensor
SijABShkAB=2gih gjk−gjhgik−i εijhk.
S3≔BivectorSolderForm⁡σ,spinor,indextype=cov,cov,cov,cov
S3:=−dt⁢dx⁢dz1⁢dz1+dt⁢dx⁢dz2⁢dz2−I⁢dt⁢dy⁢dz1⁢dz1−I⁢dt⁢dy⁢dz2⁢dz2+dt⁢dz⁢dz1⁢dz2+dt⁢dz⁢dz2⁢dz1+dx⁢dt⁢dz1⁢dz1−dx⁢dt⁢dz2⁢dz2+I⁢dx⁢dy⁢dz1⁢dz2+I⁢dx⁢dy⁢dz2⁢dz1−dx⁢dz⁢dz1⁢dz1−dx⁢dz⁢dz2⁢dz2+I⁢dy⁢dt⁢dz1⁢dz1+I⁢dy⁢dt⁢dz2⁢dz2−I⁢dy⁢dx⁢dz1⁢dz2−I⁢dy⁢dx⁢dz2⁢dz1−I⁢dy⁢dz⁢dz1⁢dz1+I⁢dy⁢dz⁢dz2⁢dz2−dz⁢dt⁢dz1⁢dz2−dz⁢dt⁢dz2⁢dz1+dz⁢dx⁢dz1⁢dz1+dz⁢dx⁢dz2⁢dz2+I⁢dz⁢dy⁢dz1⁢dz1−I⁢dz⁢dy⁢dz2⁢dz2
LHS≔ContractIndices⁡S1,S3,3,3,4,4
LHS:=−2⁢dz⁢dt⁢dz⁢dt−2⁢I⁢dt⁢dy⁢dz⁢dx−2⁢I⁢dy⁢dz⁢dt⁢dx+2⁢I⁢dt⁢dz⁢dy⁢dx+2⁢I⁢dt⁢dy⁢dx⁢dz−2⁢dt⁢dx⁢dt⁢dx+2⁢dt⁢dy⁢dy⁢dt+2⁢dz⁢dy⁢dz⁢dy+2⁢I⁢dy⁢dz⁢dx⁢dt−2⁢dt⁢dy⁢dt⁢dy−2⁢I⁢dz⁢dt⁢dy⁢dx+2⁢I⁢dx⁢dt⁢dy⁢dz−2⁢dx⁢dt⁢dx⁢dt−2⁢dz⁢dy⁢dy⁢dz−2⁢I⁢dy⁢dx⁢dz⁢dt−2⁢I⁢dx⁢dy⁢dt⁢dz+2⁢dx⁢dy⁢dx⁢dy+2⁢dz⁢dx⁢dz⁢dx−2⁢dy⁢dz⁢dz⁢dy+2⁢I⁢dy⁢dx⁢dt⁢dz+2⁢I⁢dy⁢dt⁢dz⁢dx−2⁢dy⁢dt⁢dy⁢dt−2⁢I⁢dx⁢dt⁢dz⁢dy+2⁢I⁢dz⁢dx⁢dy⁢dt−2⁢I⁢dy⁢dt⁢dx⁢dz+2⁢dt⁢dz⁢dz⁢dt−2⁢dz⁢dx⁢dx⁢dz+2⁢dx⁢dt⁢dt⁢dx+2⁢dy⁢dt⁢dt⁢dy+2⁢dt⁢dx⁢dx⁢dt+2⁢I⁢dz⁢dt⁢dx⁢dy−2⁢dx⁢dz⁢dz⁢dx−2⁢I⁢dx⁢dz⁢dy⁢dt+2⁢dx⁢dz⁢dx⁢dz+2⁢dz⁢dt⁢dt⁢dz−2⁢dy⁢dx⁢dx⁢dy+2⁢dy⁢dx⁢dy⁢dx+2⁢I⁢dz⁢dy⁢dt⁢dx−2⁢I⁢dt⁢dx⁢dy⁢dz+2⁢dy⁢dz⁢dy⁢dz−2⁢I⁢dz⁢dy⁢dx⁢dt+2⁢I⁢dx⁢dz⁢dt⁢dy−2⁢dx⁢dy⁢dy⁢dx+2⁢I⁢dt⁢dx⁢dz⁢dy+2⁢I⁢dx⁢dy⁢dz⁢dt−2⁢I⁢dz⁢dx⁢dt⁢dy−2⁢I⁢dt⁢dz⁢dx⁢dy−2⁢dt⁢dz⁢dt⁢dz
To calculate the right-hand side we first construct the tensor product of the metric tensor with itself.
G≔g&tensorg
G:=dt⁢dt⁢dt⁢dt−dt⁢dt⁢dx⁢dx−dt⁢dt⁢dy⁢dy−dt⁢dt⁢dz⁢dz−dx⁢dx⁢dt⁢dt+dx⁢dx⁢dx⁢dx+dx⁢dx⁢dy⁢dy+dx⁢dx⁢dz⁢dz−dy⁢dy⁢dt⁢dt+dy⁢dy⁢dx⁢dx+dy⁢dy⁢dy⁢dy+dy⁢dy⁢dz⁢dz−dz⁢dz⁢dt⁢dt+dz⁢dz⁢dx⁢dx+dz⁢dz⁢dy⁢dy+dz⁢dz⁢dz⁢dz
We re-arrange the indices of G to obtain the first two terms on the right-hand side.
RHS1≔RearrangeIndices⁡G,2,3
RHS1:=dt⁢dt⁢dt⁢dt−dt⁢dx⁢dt⁢dx−dt⁢dy⁢dt⁢dy−dt⁢dz⁢dt⁢dz−dx⁢dt⁢dx⁢dt+dx⁢dx⁢dx⁢dx+dx⁢dy⁢dx⁢dy+dx⁢dz⁢dx⁢dz−dy⁢dt⁢dy⁢dt+dy⁢dx⁢dy⁢dx+dy⁢dy⁢dy⁢dy+dy⁢dz⁢dy⁢dz−dz⁢dt⁢dz⁢dt+dz⁢dx⁢dz⁢dx+dz⁢dy⁢dz⁢dy+dz⁢dz⁢dz⁢dz
RHS2≔RearrangeIndices⁡RHS1,1,2
RHS2:=dt⁢dt⁢dt⁢dt−dx⁢dt⁢dt⁢dx−dy⁢dt⁢dt⁢dy−dz⁢dt⁢dt⁢dz−dt⁢dx⁢dx⁢dt+dx⁢dx⁢dx⁢dx+dy⁢dx⁢dx⁢dy+dz⁢dx⁢dx⁢dz−dt⁢dy⁢dy⁢dt+dx⁢dy⁢dy⁢dx+dy⁢dy⁢dy⁢dy+dz⁢dy⁢dy⁢dz−dt⁢dz⁢dz⁢dt+dx⁢dz⁢dz⁢dx+dy⁢dz⁢dz⁢dy+dz⁢dz⁢dz⁢dz
We construct the epsilon tensor using the commands MetricDensity and PermutationSymbol.
E≔MetricDensity⁡g,1,detmetric=−1&tensorPermutationSymbol⁡cov_bas
E:=dt⁢dx⁢dy⁢dz−dt⁢dx⁢dz⁢dy−dt⁢dy⁢dx⁢dz+dt⁢dy⁢dz⁢dx+dt⁢dz⁢dx⁢dy−dt⁢dz⁢dy⁢dx−dx⁢dt⁢dy⁢dz+dx⁢dt⁢dz⁢dy+dx⁢dy⁢dt⁢dz−dx⁢dy⁢dz⁢dt−dx⁢dz⁢dt⁢dy+dx⁢dz⁢dy⁢dt+dy⁢dt⁢dx⁢dz−dy⁢dt⁢dz⁢dx−dy⁢dx⁢dt⁢dz+dy⁢dx⁢dz⁢dt+dy⁢dz⁢dt⁢dx−dy⁢dz⁢dx⁢dt−dz⁢dt⁢dx⁢dy+dz⁢dt⁢dy⁢dx+dz⁢dx⁢dt⁢dy−dz⁢dx⁢dy⁢dt−dz⁢dy⁢dt⁢dx+dz⁢dy⁢dx⁢dt
Evaluate the right-hand side of the identity and check that it agrees with the left-hand side.
RHS≔evalDG⁡2⁢RHS1−RHS2−I⁢E
RHS:=2⁢I⁢dy⁢dz⁢dx⁢dt+2⁢dz⁢dy⁢dz⁢dy+2⁢I⁢dt⁢dx⁢dz⁢dy+2⁢dx⁢dz⁢dx⁢dz−2⁢I⁢dy⁢dz⁢dt⁢dx+2⁢I⁢dx⁢dy⁢dz⁢dt−2⁢dt⁢dy⁢dt⁢dy−2⁢dx⁢dz⁢dz⁢dx−2⁢dx⁢dy⁢dy⁢dx+2⁢I⁢dx⁢dz⁢dt⁢dy−2⁢dz⁢dy⁢dy⁢dz−2⁢dy⁢dx⁢dx⁢dy−2⁢I⁢dz⁢dy⁢dx⁢dt−2⁢dy⁢dt⁢dy⁢dt−2⁢dx⁢dt⁢dx⁢dt−2⁢I⁢dt⁢dy⁢dz⁢dx+2⁢dz⁢dx⁢dz⁢dx+2⁢I⁢dz⁢dx⁢dy⁢dt−2⁢dz⁢dx⁢dx⁢dz−2⁢I⁢dz⁢dx⁢dt⁢dy−2⁢dz⁢dt⁢dz⁢dt+2⁢dy⁢dt⁢dt⁢dy−2⁢I⁢dz⁢dt⁢dy⁢dx+2⁢I⁢dz⁢dt⁢dx⁢dy+2⁢dz⁢dt⁢dt⁢dz+2⁢dt⁢dz⁢dz⁢dt+2⁢dt⁢dx⁢dx⁢dt−2⁢I⁢dy⁢dx⁢dz⁢dt+2⁢I⁢dx⁢dt⁢dy⁢dz−2⁢I⁢dy⁢dt⁢dx⁢dz−2⁢I⁢dx⁢dt⁢dz⁢dy−2⁢I⁢dx⁢dy⁢dt⁢dz+2⁢I⁢dt⁢dy⁢dx⁢dz−2⁢dy⁢dz⁢dz⁢dy−2⁢I⁢dt⁢dz⁢dx⁢dy+2⁢dy⁢dx⁢dy⁢dx−2⁢I⁢dt⁢dx⁢dy⁢dz−2⁢I⁢dx⁢dz⁢dy⁢dt+2⁢I⁢dy⁢dt⁢dz⁢dx+2⁢dx⁢dt⁢dt⁢dx+2⁢dx⁢dy⁢dx⁢dy−2⁢dt⁢dz⁢dt⁢dz+2⁢dy⁢dz⁢dy⁢dz+2⁢I⁢dz⁢dy⁢dt⁢dx+2⁢dt⁢dy⁢dy⁢dt−2⁢dt⁢dx⁢dt⁢dx+2⁢I⁢dy⁢dx⁢dt⁢dz+2⁢I⁢dt⁢dz⁢dy⁢dx
0⁢dt⁢dt⁢dt⁢dt
Example 4.
The bivector solder form is anti-self-dual, that is,
SijAB=−i2εijhkShkAB.
We check this identity using the solder form from Example 1. The left-hand side is just the solder form S1 from Example 1.
LHS≔S1
LHS:=dt⁢dx⁢D_z1⁢D_z1−dt⁢dx⁢D_z2⁢D_z2−I⁢dt⁢dy⁢D_z1⁢D_z1−I⁢dt⁢dy⁢D_z2⁢D_z2−dt⁢dz⁢D_z1⁢D_z2−dt⁢dz⁢D_z2⁢D_z1−dx⁢dt⁢D_z1⁢D_z1+dx⁢dt⁢D_z2⁢D_z2−I⁢dx⁢dy⁢D_z1⁢D_z2−I⁢dx⁢dy⁢D_z2⁢D_z1−dx⁢dz⁢D_z1⁢D_z1−dx⁢dz⁢D_z2⁢D_z2+I⁢dy⁢dt⁢D_z1⁢D_z1+I⁢dy⁢dt⁢D_z2⁢D_z2+I⁢dy⁢dx⁢D_z1⁢D_z2+I⁢dy⁢dx⁢D_z2⁢D_z1+I⁢dy⁢dz⁢D_z1⁢D_z1−I⁢dy⁢dz⁢D_z2⁢D_z2+dz⁢dt⁢D_z1⁢D_z2+dz⁢dt⁢D_z2⁢D_z1+dz⁢dx⁢D_z1⁢D_z1+dz⁢dx⁢D_z2⁢D_z2−I⁢dz⁢dy⁢D_z1⁢D_z1+I⁢dz⁢dy⁢D_z2⁢D_z2
To evaluate the right-hand side we begin with the contravariant form of the bivector solder form.
S4≔BivectorSolderForm⁡σ,spinor,indextype=con,con,con,con
S4:=−D_t⁢D_x⁢D_z1⁢D_z1+D_t⁢D_x⁢D_z2⁢D_z2+I⁢D_t⁢D_y⁢D_z1⁢D_z1+I⁢D_t⁢D_y⁢D_z2⁢D_z2+D_t⁢D_z⁢D_z1⁢D_z2+D_t⁢D_z⁢D_z2⁢D_z1+D_x⁢D_t⁢D_z1⁢D_z1−D_x⁢D_t⁢D_z2⁢D_z2−I⁢D_x⁢D_y⁢D_z1⁢D_z2−I⁢D_x⁢D_y⁢D_z2⁢D_z1−D_x⁢D_z⁢D_z1⁢D_z1−D_x⁢D_z⁢D_z2⁢D_z2−I⁢D_y⁢D_t⁢D_z1⁢D_z1−I⁢D_y⁢D_t⁢D_z2⁢D_z2+I⁢D_y⁢D_x⁢D_z1⁢D_z2+I⁢D_y⁢D_x⁢D_z2⁢D_z1+I⁢D_y⁢D_z⁢D_z1⁢D_z1−I⁢D_y⁢D_z⁢D_z2⁢D_z2−D_z⁢D_t⁢D_z1⁢D_z2−D_z⁢D_t⁢D_z2⁢D_z1+D_z⁢D_x⁢D_z1⁢D_z1+D_z⁢D_x⁢D_z2⁢D_z2−I⁢D_z⁢D_y⁢D_z1⁢D_z1+I⁢D_z⁢D_y⁢D_z2⁢D_z2
Construct the epsilon tensor and contract with S4 and to obtain the left-hand side.
RHS≔−I2&multContractIndices⁡E,S4,3,1,4,2
RHS:=dt⁢dx⁢D_z1⁢D_z1−dt⁢dx⁢D_z2⁢D_z2−I⁢dt⁢dy⁢D_z1⁢D_z1−I⁢dt⁢dy⁢D_z2⁢D_z2−dt⁢dz⁢D_z1⁢D_z2−dt⁢dz⁢D_z2⁢D_z1−dx⁢dt⁢D_z1⁢D_z1+dx⁢dt⁢D_z2⁢D_z2−I⁢dx⁢dy⁢D_z1⁢D_z2−I⁢dx⁢dy⁢D_z2⁢D_z1−dx⁢dz⁢D_z1⁢D_z1−dx⁢dz⁢D_z2⁢D_z2+I⁢dy⁢dt⁢D_z1⁢D_z1+I⁢dy⁢dt⁢D_z2⁢D_z2+I⁢dy⁢dx⁢D_z1⁢D_z2+I⁢dy⁢dx⁢D_z2⁢D_z1+I⁢dy⁢dz⁢D_z1⁢D_z1−I⁢dy⁢dz⁢D_z2⁢D_z2+dz⁢dt⁢D_z1⁢D_z2+dz⁢dt⁢D_z2⁢D_z1+dz⁢dx⁢D_z1⁢D_z1+dz⁢dx⁢D_z2⁢D_z2−I⁢dz⁢dy⁢D_z1⁢D_z1+I⁢dz⁢dy⁢D_z2⁢D_z2
0⁢dt⁢dt⁢D_z1⁢D_z1
DifferentialGeometry, Tensor, ContractIndices, KroneckerDeltaSpinor, MetricDensity, PermutationSymbol, SolderForm, SymmetrizeIndices, RearrangeIndices
Download Help Document