DifferentialGeometry/Tensor/BivectorSolderForm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/BivectorSolderForm

Tensor[BivectorSolderForm] - construct the bivector solder form defined by a solder form

Calling Sequences

     BivectorSolderForm(sigma, spinorType, indexlist)

Parameters

   sigma      - a solder form

   spinorType - a string, either "spinor" or "barspinor"

   indexlist  - (optional) the keyword argument indexlist = ind, where ind is a list of 4 index types "con" or "cov"

 

Description

Examples

See Also

Description

• 

A bivector is a skew-symmetric, rank 2 contravariant tensor. On a 4-dimensional manifold with solder form σ there is a 1-1 correspondence between bivectors and symmetric rank 2 spinors.  This correspondence is explicitly furnished by the bivector solder forms S and S which are defined in terms of the solder form s by

SijAB=σiAC 'σj C 'BσjBC 'σi C 'A

    and

SijA'B'=σiCA 'σjC     B'σjCB 'σiC    A'.

    

• 

The tensor indices of the bivector solder forms are raised and lowered with the metric g defined by σ

• 

The keyword argument indexlist = ind allows the user to specify the index structure for the bivector solder form. For example, with indexlist = ["con", "con", "con", "con"], the contravariant form S ijAB is returned.

• 

The bivector soldering forms satisfy a large number of identities, some of which are illustrated in Examples 2 - 4.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BivectorSolderForm(...) only after executing the commands with(DifferentialGeometry; with(Tensor); in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-BivectorSolderForm.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a vector bundle over M with base coordinates t, x,y,z and fiber coordinates z1, z2, w1,w2.

DGsetupt,x,y,z,z1,z2,w1,w2,M

frame name: M

(2.1)

 

Define a metric g on M. Note that our spinor conventions have the metric with signature +1, 1, 1, 1.

gevalDGdt&tdtdx&tdxdy&tdydz&tdz

g:=dtdtdxdxdydydzdz

(2.2)

 

Define an orthonormal frame on M with respect to the metric g.

FD_t,D_x,D_y,D_z

F:=D_t,D_x,D_y,D_z

(2.3)

 

Calculate the solder form sigma from the frame F.

σSolderFormF

σ:=22dtD_z1D_w1+22dtD_z2D_w2+22dxD_z1D_w2+22dxD_z2D_w1I22dyD_z1D_w2+I22dyD_z2D_w1+22dzD_z1D_w122dzD_z2D_w2

(2.4)

 

Calculate the bivector solder form S from sigma.

SBivectorSolderFormσ,spinor

S:=dtdxD_z1D_z1dtdxD_z2D_z2IdtdyD_z1D_z1IdtdyD_z2D_z2dtdzD_z1D_z2dtdzD_z2D_z1dxdtD_z1D_z1+dxdtD_z2D_z2IdxdyD_z1D_z2IdxdyD_z2D_z1dxdzD_z1D_z1dxdzD_z2D_z2+IdydtD_z1D_z1+IdydtD_z2D_z2+IdydxD_z1D_z2+IdydxD_z2D_z1+IdydzD_z1D_z1IdydzD_z2D_z2+dzdtD_z1D_z2+dzdtD_z2D_z1+dzdxD_z1D_z1+dzdxD_z2D_z2IdzdyD_z1D_z1+IdzdyD_z2D_z2

(2.5)

 

Example 2.

The contraction of two bivector solder forms on their tensor indices can be expressed in terms of the Kronecker delta spinor.

 

SijABSCDij=4 δCAδDB+δCBδDA.

 

We check this identity using the solder form from Example 1.  First we calculate the left-hand side.

S1BivectorSolderFormσ,spinor

S1:=dtdxD_z1D_z1dtdxD_z2D_z2IdtdyD_z1D_z1IdtdyD_z2D_z2dtdzD_z1D_z2dtdzD_z2D_z1dxdtD_z1D_z1+dxdtD_z2D_z2IdxdyD_z1D_z2IdxdyD_z2D_z1dxdzD_z1D_z1dxdzD_z2D_z2+IdydtD_z1D_z1+IdydtD_z2D_z2+IdydxD_z1D_z2+IdydxD_z2D_z1+IdydzD_z1D_z1IdydzD_z2D_z2+dzdtD_z1D_z2+dzdtD_z2D_z1+dzdxD_z1D_z1+dzdxD_z2D_z2IdzdyD_z1D_z1+IdzdyD_z2D_z2

(2.6)

S2BivectorSolderFormσ,spinor,indextype=con,con,cov,cov

S2:=D_tD_xdz1dz1D_tD_xdz2dz2+ID_tD_ydz1dz1+ID_tD_ydz2dz2D_tD_zdz1dz2D_tD_zdz2dz1D_xD_tdz1dz1+D_xD_tdz2dz2+ID_xD_ydz1dz2+ID_xD_ydz2dz1D_xD_zdz1dz1D_xD_zdz2dz2ID_yD_tdz1dz1ID_yD_tdz2dz2ID_yD_xdz1dz2ID_yD_xdz2dz1ID_yD_zdz1dz1+ID_yD_zdz2dz2+D_zD_tdz1dz2+D_zD_tdz2dz1+D_zD_xdz1dz1+D_zD_xdz2dz2+ID_zD_ydz1dz1ID_zD_ydz2dz2

(2.7)

LHSContractIndicesS1,S2,1,1,2,2

LHS:=8D_z1D_z1dz1dz1+4D_z1D_z2dz1dz2+4D_z1D_z2dz2dz1+4D_z2D_z1dz1dz2+4D_z2D_z1dz2dz1+8D_z2D_z2dz2dz2

(2.8)

 

To calculate the right-hand side we construct the symmetrized tensor product of 2 Kronecker delta spinors and multiply by 8 (because SymmetrizeIndices will include a factor of 1/2).

δKroneckerDeltaSpinorspinor

δ:=D_z1dz1+D_z2dz2

(2.9)

ERearrangeIndicesδ&tδ,2,3

E:=D_z1D_z1dz1dz1+D_z1D_z2dz1dz2+D_z2D_z1dz2dz1+D_z2D_z2dz2dz2

(2.10)

RHS8&multSymmetrizeIndicesE,1,2,Symmetric

RHS:=8D_z1D_z1dz1dz1+4D_z1D_z2dz1dz2+4D_z1D_z2dz2dz1+4D_z2D_z1dz1dz2+4D_z2D_z1dz2dz1+8D_z2D_z2dz2dz2

(2.11)

 

Check that the LHS and RHS are the same.

LHS&minusRHS

0D_z1D_z1dz1dz1

(2.12)

 

Example 3.

The contraction of two bivector soldering forms on their tensor indices can be expressed in terms of the metric and the permutation tensor

 

SijABShkAB=2gih gjkgjhgiki εijhk.

 

We check this identity using the solder form from Example 1.  First we calculate the left-hand side.

S3BivectorSolderFormσ,spinor,indextype=cov,cov,cov,cov

S3:=dtdxdz1dz1+dtdxdz2dz2Idtdydz1dz1Idtdydz2dz2+dtdzdz1dz2+dtdzdz2dz1+dxdtdz1dz1dxdtdz2dz2+Idxdydz1dz2+Idxdydz2dz1dxdzdz1dz1dxdzdz2dz2+Idydtdz1dz1+Idydtdz2dz2Idydxdz1dz2Idydxdz2dz1Idydzdz1dz1+Idydzdz2dz2dzdtdz1dz2dzdtdz2dz1+dzdxdz1dz1+dzdxdz2dz2+Idzdydz1dz1Idzdydz2dz2

(2.13)

LHSContractIndicesS1,S3,3,3,4,4

LHS:=2dzdtdzdt2Idtdydzdx2Idydzdtdx+2Idtdzdydx+2Idtdydxdz2dtdxdtdx+2dtdydydt+2dzdydzdy+2Idydzdxdt2dtdydtdy2Idzdtdydx+2Idxdtdydz2dxdtdxdt2dzdydydz2Idydxdzdt2Idxdydtdz+2dxdydxdy+2dzdxdzdx2dydzdzdy+2Idydxdtdz+2Idydtdzdx2dydtdydt2Idxdtdzdy+2Idzdxdydt2Idydtdxdz+2dtdzdzdt2dzdxdxdz+2dxdtdtdx+2dydtdtdy+2dtdxdxdt+2Idzdtdxdy2dxdzdzdx2Idxdzdydt+2dxdzdxdz+2dzdtdtdz2dydxdxdy+2dydxdydx+2Idzdydtdx2Idtdxdydz+2dydzdydz2Idzdydxdt+2Idxdzdtdy2dxdydydx+2Idtdxdzdy+2Idxdydzdt2Idzdxdtdy2Idtdzdxdy2dtdzdtdz

(2.14)

 

To calculate the right-hand side we first construct the tensor product of the metric tensor with itself.

Gg&tensorg

G:=dtdtdtdtdtdtdxdxdtdtdydydtdtdzdzdxdxdtdt+dxdxdxdx+dxdxdydy+dxdxdzdzdydydtdt+dydydxdx+dydydydy+dydydzdzdzdzdtdt+dzdzdxdx+dzdzdydy+dzdzdzdz

(2.15)

 

We re-arrange the indices of G to obtain the first two terms on the right-hand side.

RHS1RearrangeIndicesG,2,3

RHS1:=dtdtdtdtdtdxdtdxdtdydtdydtdzdtdzdxdtdxdt+dxdxdxdx+dxdydxdy+dxdzdxdzdydtdydt+dydxdydx+dydydydy+dydzdydzdzdtdzdt+dzdxdzdx+dzdydzdy+dzdzdzdz

(2.16)

RHS2RearrangeIndicesRHS1,1,2

RHS2:=dtdtdtdtdxdtdtdxdydtdtdydzdtdtdzdtdxdxdt+dxdxdxdx+dydxdxdy+dzdxdxdzdtdydydt+dxdydydx+dydydydy+dzdydydzdtdzdzdt+dxdzdzdx+dydzdzdy+dzdzdzdz

(2.17)

 

We construct the epsilon tensor using the commands MetricDensity and PermutationSymbol.

EMetricDensityg,1,detmetric=1&tensorPermutationSymbolcov_bas

E:=dtdxdydzdtdxdzdydtdydxdz+dtdydzdx+dtdzdxdydtdzdydxdxdtdydz+dxdtdzdy+dxdydtdzdxdydzdtdxdzdtdy+dxdzdydt+dydtdxdzdydtdzdxdydxdtdz+dydxdzdt+dydzdtdxdydzdxdtdzdtdxdy+dzdtdydx+dzdxdtdydzdxdydtdzdydtdx+dzdydxdt

(2.18)

 

Evaluate the right-hand side of the identity and check that it agrees with the left-hand side.

RHSevalDG2RHS1RHS2IE

RHS:=2Idydzdxdt+2dzdydzdy+2Idtdxdzdy+2dxdzdxdz2Idydzdtdx+2Idxdydzdt2dtdydtdy2dxdzdzdx2dxdydydx+2Idxdzdtdy2dzdydydz2dydxdxdy2Idzdydxdt2dydtdydt2dxdtdxdt2Idtdydzdx+2dzdxdzdx+2Idzdxdydt2dzdxdxdz2Idzdxdtdy2dzdtdzdt+2dydtdtdy2Idzdtdydx+2Idzdtdxdy+2dzdtdtdz+2dtdzdzdt+2dtdxdxdt2Idydxdzdt+2Idxdtdydz2Idydtdxdz2Idxdtdzdy2Idxdydtdz+2Idtdydxdz2dydzdzdy2Idtdzdxdy+2dydxdydx2Idtdxdydz2Idxdzdydt+2Idydtdzdx+2dxdtdtdx+2dxdydxdy2dtdzdtdz+2dydzdydz+2Idzdydtdx+2dtdydydt2dtdxdtdx+2Idydxdtdz+2Idtdzdydx

(2.19)

LHS&minusRHS

0dtdtdtdt

(2.20)

 

Example 4.

The bivector solder form is anti-self-dual, that is,

 

SijAB=i2εijhkShkAB.

 

We check this identity using the solder form from Example 1.  The left-hand side is just the solder form S1 from Example 1.

LHSS1

LHS:=dtdxD_z1D_z1dtdxD_z2D_z2IdtdyD_z1D_z1IdtdyD_z2D_z2dtdzD_z1D_z2dtdzD_z2D_z1dxdtD_z1D_z1+dxdtD_z2D_z2IdxdyD_z1D_z2IdxdyD_z2D_z1dxdzD_z1D_z1dxdzD_z2D_z2+IdydtD_z1D_z1+IdydtD_z2D_z2+IdydxD_z1D_z2+IdydxD_z2D_z1+IdydzD_z1D_z1IdydzD_z2D_z2+dzdtD_z1D_z2+dzdtD_z2D_z1+dzdxD_z1D_z1+dzdxD_z2D_z2IdzdyD_z1D_z1+IdzdyD_z2D_z2

(2.21)

 

To evaluate the right-hand side we begin with the contravariant form of the bivector solder form.

S4BivectorSolderFormσ,spinor,indextype=con,con,con,con

S4:=D_tD_xD_z1D_z1+D_tD_xD_z2D_z2+ID_tD_yD_z1D_z1+ID_tD_yD_z2D_z2+D_tD_zD_z1D_z2+D_tD_zD_z2D_z1+D_xD_tD_z1D_z1D_xD_tD_z2D_z2ID_xD_yD_z1D_z2ID_xD_yD_z2D_z1D_xD_zD_z1D_z1D_xD_zD_z2D_z2ID_yD_tD_z1D_z1ID_yD_tD_z2D_z2+ID_yD_xD_z1D_z2+ID_yD_xD_z2D_z1+ID_yD_zD_z1D_z1ID_yD_zD_z2D_z2D_zD_tD_z1D_z2D_zD_tD_z2D_z1+D_zD_xD_z1D_z1+D_zD_xD_z2D_z2ID_zD_yD_z1D_z1+ID_zD_yD_z2D_z2

(2.22)

 

Construct the epsilon tensor and contract with S4 and to obtain the left-hand side.

EMetricDensityg,1,detmetric=1&tensorPermutationSymbolcov_bas

E:=dtdxdydzdtdxdzdydtdydxdz+dtdydzdx+dtdzdxdydtdzdydxdxdtdydz+dxdtdzdy+dxdydtdzdxdydzdtdxdzdtdy+dxdzdydt+dydtdxdzdydtdzdxdydxdtdz+dydxdzdt+dydzdtdxdydzdxdtdzdtdxdy+dzdtdydx+dzdxdtdydzdxdydtdzdydtdx+dzdydxdt

(2.23)

RHSI2&multContractIndicesE,S4,3,1,4,2

RHS:=dtdxD_z1D_z1dtdxD_z2D_z2IdtdyD_z1D_z1IdtdyD_z2D_z2dtdzD_z1D_z2dtdzD_z2D_z1dxdtD_z1D_z1+dxdtD_z2D_z2IdxdyD_z1D_z2IdxdyD_z2D_z1dxdzD_z1D_z1dxdzD_z2D_z2+IdydtD_z1D_z1+IdydtD_z2D_z2+IdydxD_z1D_z2+IdydxD_z2D_z1+IdydzD_z1D_z1IdydzD_z2D_z2+dzdtD_z1D_z2+dzdtD_z2D_z1+dzdxD_z1D_z1+dzdxD_z2D_z2IdzdyD_z1D_z1+IdzdyD_z2D_z2

(2.24)

LHS&minusRHS

0dtdtD_z1D_z1

(2.25)

See Also

DifferentialGeometry, Tensor, ContractIndices, KroneckerDeltaSpinor, MetricDensity, PermutationSymbol, SolderForm, SymmetrizeIndices, RearrangeIndices