Tensor[Christoffel] - find the Christoffel symbols of the first or second kind for a metric tensor
Calling Sequences
Christoffel(g, h, keyword)
Parameters
g - a metric tensor on the tangent bundle of a manifold
h - (optional) the inverse of the metric g
keyword - (optional) a keyword string, either "FirstKind" or "SecondKind"
Description
Examples
See Also
The Christoffel symbol of the second kind for a metric g is the unique torsion-free connection such that the associated covariant derivative operator ∇ satisfies ∇g=0. It can be represented as a 3-index set of coefficients:
C ijk = 12gklgil,j + gjl,i − gij,l,
where gij and gij are the components of the metric and its inverse, respectively, and where a comma indicates a partial derivative.
The Christoffel symbol of the first kind is the non-tensorial quantity obtained from the Christoffel symbol of the second kind by lowering its upper index with the metric:
Clij = gklCijk=12gil,j + gjl,i − gij,l,
The default value for the keyword is "SecondKind", that is, the calling sequence Christoffel(g) computes the Christoffel symbol of the second kind.
The inverse of the metric can be computed using InverseMetric.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form Christoffel(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-Christoffel.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create a 2 dimensional manifold M and define a metric g1 on the tangent space of M.
DGsetup⁡x,y,M
frame name: M
g1≔evalDG⁡1y2⁢dx&tdx+dy&tdy
g1:=dx⁢dxy2+dy⁢dyy2
Calculate the Christoffel symbols of the first and second kind for g1.
C1≔Christoffel⁡g1,FirstKind
C1:=−dx⁢dx⁢dyy3−dx⁢dy⁢dxy3+dy⁢dx⁢dxy3−dy⁢dy⁢dyy3
C2≔Christoffel⁡g1,SecondKind
C2:=−D_x⁢dx⁢dyy−D_x⁢dy⁢dxy+D_y⁢dx⁢dxy−D_y⁢dy⁢dyy
CovariantDerivative⁡g1,C2
0⁢dx⁢dx⁢dx
TorsionTensor⁡C2
0⁢D_x⁢dx⁢dx
Example 2.
Define an anholonomic frame on M and use this frame to calculate the Christoffel symbol for a metric on the tangent space of M.
FR≔FrameData⁡dx1+x2+y2,dy1+x2+y2,M1
FR:=d⁢Θ1=2⁢y⁢Θ1⁢⋀⁢Θ2,d⁢Θ2=−2⁢x⁢Θ1⁢⋀⁢Θ2
DGsetup⁡FR,E,σ
frame name: M1
g2≔evalDG⁡σ1&tσ1+σ2&tσ2
g2:=σ1⁢σ1+σ2⁢σ2
C≔Christoffel⁡g2
C:=−2⁢y⁢E1⁢σ2⁢σ1+2⁢x⁢E1⁢σ2⁢σ2+2⁢y⁢E2⁢σ1⁢σ1−2⁢x⁢E2⁢σ1⁢σ2
CovariantDerivative⁡g2,C
0⁢σ1⁢σ1⁢σ1
TorsionTensor⁡C
0⁢E1⁢σ1⁢σ1
DifferentialGeometry, Tensor, CovariantDerivative, Physics[D_], CurvatureTensor, Physics[Riemann], DirectionalCovariantDerivative, GeodesicEquations, ParallelTransportEquations, TorsionTensor
Download Help Document