Christoffel - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[Christoffel] - find the Christoffel symbols of the first or second kind for a metric tensor

Calling Sequences

     Christoffel(g, h, keyword)

Parameters

   g       - a metric tensor on the tangent bundle of a manifold

   h       - (optional) the inverse of the metric g

   keyword - (optional) a keyword string, either "FirstKind" or "SecondKind"

 

Description

Examples

See Also

Description

• 

The Christoffel symbol of the second kind for a metric g is the unique torsion-free connection such that the associated covariant derivative operator  satisfies g=0. It can be represented as a 3-index set of coefficients:

 

C  ijk = 12gklgil,j + gjl,i  gij,l,

 

where gij  and gij are the components of the metric and its inverse, respectively, and where a comma indicates a partial derivative.

• 

The Christoffel symbol of the first kind is the non-tensorial quantity obtained from the Christoffel symbol of the second kind by lowering its upper index with the metric:

Clij = gklCijk=12gil,j + gjl,i  gij,l,

 

• 

The default value for the keyword is "SecondKind", that is, the calling sequence Christoffel(g) computes the Christoffel symbol of the second kind.

• 

The inverse of the metric can be computed using InverseMetric.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form Christoffel(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-Christoffel.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a 2 dimensional manifold M and define a metric g1 on the tangent space of M.

DGsetupx,y,M

frame name: M

(2.1)

g1evalDG1y2dx&tdx+dy&tdy

g1:=dxdxy2+dydyy2

(2.2)

 

Calculate the Christoffel symbols of the first and second kind for g1.

C1Christoffelg1,FirstKind

C1:=dxdxdyy3dxdydxy3+dydxdxy3dydydyy3

(2.3)

C2Christoffelg1,SecondKind

C2:=D_xdxdyyD_xdydxy+D_ydxdxyD_ydydyy

(2.4)

CovariantDerivativeg1,C2

0dxdxdx

(2.5)

TorsionTensorC2

0D_xdxdx

(2.6)

 

Example 2.

Define an anholonomic frame on M and use this frame to calculate the Christoffel symbol for a metric on the tangent space of M.

 

FRFrameDatadx1+x2+y2,dy1+x2+y2,M1

FR:=dΘ1=2yΘ1Θ2,dΘ2=2xΘ1Θ2

(2.7)

DGsetupFR,E,σ

frame name: M1

(2.8)

g2evalDGσ1&tσ1+σ2&tσ2

g2:=σ1σ1+σ2σ2

(2.9)

CChristoffelg2

C:=2yE1σ2σ1+2xE1σ2σ2+2yE2σ1σ12xE2σ1σ2

(2.10)

CovariantDerivativeg2,C

0σ1σ1σ1

(2.11)

TorsionTensorC

0E1σ1σ1

(2.12)

See Also

DifferentialGeometry, Tensor, CovariantDerivative, Physics[D_], CurvatureTensor, Physics[Riemann], DirectionalCovariantDerivative, GeodesicEquations, ParallelTransportEquations, TorsionTensor