DifferentialGeometry/Tensor/ConjugateSpinor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/ConjugateSpinor

Tensor[ConjugateSpinor] - calculate the complex conjugate of a spinor

Calling Sequences

     ConjugateSpinor(S, ConjCoord)

Parameters

   S         - a spinor

   ConjCoord - (optional) keyword argument conjugatecoordinates = C, where C is a list of lists specifying conjugate coordinates

 

Description

Examples

See Also

Description

• 

The command ConjugateSpinor(S) calculates the complex conjugate of an arbitrary spinor S.

• 

For spinors with real parameters, the assuming command of Maple can be used to properly calculate the complex conjugates.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form ConjugateSpinor(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-ConjugateSpinor.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a vector bundle EM with base coordinates x,y,z,t and fiber coordinates z1,z2,w1,w2. For spinor applications, it is tacitly assumed that z1,z2 are complex coordinates with complex conjugates w1,w2.

DGsetupx,y,z,t,z1,z2,w1,w2,E

frame name: E

(2.1)

 

Define spinors S1 and S2 and calculate their complex conjugates.

E > 

S1D_z1

S1:=D_z1

(2.2)
E > 

ConjugateSpinorS1

D_w1

(2.3)
E > 

S2dw1+3Idw2

S2:=dw1+3Idw2

(2.4)
E > 

ConjugateSpinorS2

dz13Idz2

(2.5)

 

Example 2.

The two type 1,1 Kronecker delta spinors are complex conjugates of each other.

E > 

S3KroneckerDeltaSpinorspinor

S3:=D_z1dz1+D_z2dz2

(2.6)
E > 

S4KroneckerDeltaSpinorbarspinor

S4:=D_w1dw1+D_w2dw2

(2.7)
E > 

ConjugateSpinorS3&minusS4

0D_z1dz1

(2.8)

 

Example 3.

The soldering form is always a Hermitian spinor.  To check this calculate, first define the solder form σ, then conjugate σ and interchange the 2nd and 3rd indices.  The result is the original solder form σ.

E > 

FD_t,D_x,D_y,D_z:

E > 

σSolderFormF

σ22dxD_z1D_w2+22dxD_z2D_w1I22dyD_z1D_w2+I22dyD_z2D_w1+22dzD_z1D_w122dzD_z2D_w2+22dtD_z1D_w1+22dtD_z2D_w2

(2.9)
E > 

bar_sigmaConjugateSpinorσ

bar_sigma22dxD_w1D_z2+22dxD_w2D_z1+I22dyD_w1D_z2I22dyD_w2D_z1+22dzD_w1D_z122dzD_w2D_z2+22dtD_w1D_z1+22dtD_w2D_z2

(2.10)
E > 

σ&minusRearrangeIndicesbar_sigma,2,3

0dxD_z1D_z1

(2.11)

 

Example 4.

Use the Maple assuming command to simplify the complex conjugate of a spinor-tensor containing a real parameter α.

E > 

S5evalDGαD_t&tD_w1+xαD_z&tD_w2

S5xαD_zD_w2+αD_tD_w1

(2.12)
E > 

S6ConjugateSpinorS5assumingα::real

S6xαD_zD_z2+αD_tD_z1

(2.13)

 

Example 6.

In some applications complex coordinates on the base space are used. Suppose, for example, that z and t are real coordinates and that u is a complex coordinate with complex conjugate v.

M > 

DGsetupu,v,z,t,z1,z2,w1,w2,N

frame name: N

(2.14)
N > 

S7evalDGvD_z1&tdz2+tuD_z2&tdz1

S7vD_z1dz2+tuD_z2dz1

(2.15)

 

Use the keyword argument conjugatecoordinates to specify that the conjugate of u is v (and the conjugate of v is u).

N > 

ConjugateSpinorS7,conjugatecoordinates=u,v

uD_w1dw2+tvD_w2dw1

(2.16)
N > 

S8evalDGαD_u&tdz2

S8αD_udz2

(2.17)
N > 

ConjugateSpinorS8,conjugatecoordinates=u,vassumingα::real

αD_vdw2

(2.18)

See Also

DifferentialGeometry, Tensor, assuming, DGmap, KroneckerDeltaSpinor, RearrangeIndices, SolderForm